期刊论文详细信息
STOCHASTIC PROCESSES AND THEIR APPLICATIONS 卷:121
Limit theorems in the Fourier transform method for the estimation of multivariate volatility
Article
Clement, Emmanuelle1  Gloter, Arnaud2 
[1] Univ Paris Est, Lab Anal & Math Appl, F-77454 Marne La Vallee 2, France
[2] Univ Evry Val dEssonne, Dept Math, F-91025 Evry, France
关键词: Non-parametric estimation;    Ito process;    Fourier transform;    Weak convergence;   
DOI  :  10.1016/j.spa.2010.11.016
来源: Elsevier
PDF
【 摘 要 】

In this paper, we prove some limit theorems for the Fourier estimator of multivariate volatility proposed by Malliavin and Mancino (2002, 2009) [14,15]. In a general framework of discrete time observations we establish the convergence of the estimator and some associated central limit theorems with explicit asymptotic variance. In particular, our results show that this estimator is consistent for synchronous data, but possibly biased for non-synchronous observations. Moreover, from our general central limit theorem, we deduce that the estimator can be efficient in the case of a synchronous regular sampling. In the non-synchronous sampling case, the expression of the asymptotic variance is in general less tractable. We study this case more precisely through the example of an alternate sampling. (C) 2011 Elsevier B.V. All rights reserved.

【 授权许可】

Free   

【 预 览 】
附件列表
Files Size Format View
10_1016_j_spa_2010_11_016.pdf 396KB PDF download
  文献评价指标  
  下载次数:6次 浏览次数:1次