期刊论文详细信息
| STOCHASTIC PROCESSES AND THEIR APPLICATIONS | 卷:128 |
| Lifschitz singularity for subordinate Brownian motions in presence of the Poissonian potential on the Sierpiriski gasket | |
| Article | |
| Kaleta, Kamil1,2  Pietruska-Paluba, Katarzyna1  | |
| [1] Univ Warsaw, Inst Math, Ul Banacha 2, PL-02097 Warsaw, Poland | |
| [2] Wroclaw Univ Sci & Technol, Fac Pure & Appl Math, Wyb Wyspianskiego 27, PL-50370 Wroclaw, Poland | |
| 关键词: Subordinate Brownian motion; Sierpinski gasket; Random Feynman-Kac semigroup; Schrodinger operator; Random potential; Integrated density of states; Eigenvalues; Reflected process; | |
| DOI : 10.1016/j.spa.2018.01.003 | |
| 来源: Elsevier | |
PDF
|
|
【 摘 要 】
We establish the Lifschitz-type singularity around the bottom of the spectrum for the integrated density of states for a class of subordinate Brownian motions in presence of the nonnegative Poissonian random potentials, possibly of infinite range, on the Sierpinski gasket. We also study the long-time behaviour for the corresponding averaged Feynman-Kac functionals. (C) 2018 Elsevier B.V. All rights reserved.
【 授权许可】
Free
【 预 览 】
| Files | Size | Format | View |
|---|---|---|---|
| 10_1016_j_spa_2018_01_003.pdf | 618KB |
PDF