期刊论文详细信息
STOCHASTIC PROCESSES AND THEIR APPLICATIONS 卷:128
Lifschitz singularity for subordinate Brownian motions in presence of the Poissonian potential on the Sierpiriski gasket
Article
Kaleta, Kamil1,2  Pietruska-Paluba, Katarzyna1 
[1] Univ Warsaw, Inst Math, Ul Banacha 2, PL-02097 Warsaw, Poland
[2] Wroclaw Univ Sci & Technol, Fac Pure & Appl Math, Wyb Wyspianskiego 27, PL-50370 Wroclaw, Poland
关键词: Subordinate Brownian motion;    Sierpinski gasket;    Random Feynman-Kac semigroup;    Schrodinger operator;    Random potential;    Integrated density of states;    Eigenvalues;    Reflected process;   
DOI  :  10.1016/j.spa.2018.01.003
来源: Elsevier
PDF
【 摘 要 】

We establish the Lifschitz-type singularity around the bottom of the spectrum for the integrated density of states for a class of subordinate Brownian motions in presence of the nonnegative Poissonian random potentials, possibly of infinite range, on the Sierpinski gasket. We also study the long-time behaviour for the corresponding averaged Feynman-Kac functionals. (C) 2018 Elsevier B.V. All rights reserved.

【 授权许可】

Free   

【 预 览 】
附件列表
Files Size Format View
10_1016_j_spa_2018_01_003.pdf 618KB PDF download
  文献评价指标  
  下载次数:6次 浏览次数:1次