期刊论文详细信息
STOCHASTIC PROCESSES AND THEIR APPLICATIONS 卷:125
A class of non-ergodic probabilistic cellular automata with unique invariant measure and quasi-periodic orbit
Article
Jahnel, Benedikt1  Kuelske, Christof1 
[1] Ruhr Univ Bochum, Fak Math, D-44801 Bochum, Germany
关键词: Markov chain;    Probabilistic cellular automaton;    Interacting particle system;    Non-equilibrium;    Nonergodicity;    Rotation;    Discretization;    Gibbs measures;    XY-model;    Clock model;   
DOI  :  10.1016/j.spa.2015.01.006
来源: Elsevier
PDF
【 摘 要 】

We provide an example of a discrete-time Markov process on the three-dimensional infinite integer lattice with Z(q)-invariant Bernoulli-increments which has as local state space the cyclic group Z(q). We show that the system has a unique invariant measure, but remarkably possesses an invariant set of measures on which the dynamics is conjugate to an irrational rotation on the continuous sphere S-1. The update mechanism we construct is exponentially well localized on the lattice. (C) 2015 Elsevier B.V. All rights reserved.

【 授权许可】

Free   

【 预 览 】
附件列表
Files Size Format View
10_1016_j_spa_2015_01_006.pdf 331KB PDF download
  文献评价指标  
  下载次数:12次 浏览次数:3次