期刊论文详细信息
STOCHASTIC PROCESSES AND THEIR APPLICATIONS 卷:122
Scalar conservation laws with fractional stochastic forcing: Existence, uniqueness and invariant measure
Article
Saussereau, Bruno1  Stoica, Ion Lucretiu2,3 
[1] CNRS, Lab Math Besancon, UMR 6623, F-25030 Besancon, France
[2] Univ Bucharest, Simion Stoilow Romanian Acad, Inst Math, RO-70109 Bucharest, Romania
[3] Univ Bucharest, Fac Math, RO-70109 Bucharest, Romania
关键词: Scalar conservation laws;    Random perturbations;    Variational principle;    Deterministic control theory;    Hamilton-Jacobi-Bellman equation;    Fractional Brownian motion;   
DOI  :  10.1016/j.spa.2012.01.005
来源: Elsevier
PDF
【 摘 要 】

We study a fractional stochastic perturbation of a first-order hyperbolic equation of nonlinear type. The existence and uniqueness of the solution are investigated via a Lax-Oleinik formula. To construct the invariant measure we use two main ingredients. The first one is the notion of a generalized characteristic in the sense of Dafermos. The second one is the fact that the oscillations of the fractional Brownian motion are arbitrarily small for an infinite number of intervals of arbitrary length. (c) 2012 Elsevier B.V. All rights reserved.

【 授权许可】

Free   

【 预 览 】
附件列表
Files Size Format View
10_1016_j_spa_2012_01_005.pdf 322KB PDF download
  文献评价指标  
  下载次数:6次 浏览次数:2次