STOCHASTIC PROCESSES AND THEIR APPLICATIONS | 卷:123 |
Excursions and path functionals for stochastic processes with asymptotically zero drifts | |
Article | |
Hryniv, Ostap1  Menshikov, Mikhail V.1  Wade, Andrew R.1  | |
[1] Univ Durham, Dept Math Sci, Durham DH1 3LE, England | |
关键词: Path functional; Excursion; Maximum; Passage-time; Additive functional; Path integral; Lamperti's problem; Centre of mass; Centrally biased random walk; | |
DOI : 10.1016/j.spa.2013.02.001 | |
来源: Elsevier | |
【 摘 要 】
We study discrete-time stochastic processes (X-t) on [0, infinity) with asymptotically zero mean drifts. Specifically, we consider the critical (Lamperti-type) situation in which the mean drift at x is about c/x. Our focus is the recurrent case (when c is not too large). We give sharp asymptotics for various functionals associated with the process and its excursions, including results on maxima and return times. These results include improvements on existing results in the literature in several respects, and also include new results on excursion sums and additive functionals of the form Sigma(s <= t) X-s(alpha), alpha > 0. We make minimal moments assumptions on the increments of the process. Recently there has been renewed interest in Lamperti-type process in the context of random polymers and interfaces, particularly nearest-neighbour random walks on the integers; some of our results are new even in that setting. We give applications of our results to processes on the whole of R and to a class of multidimensional 'centrally biased' random walks on R-d; we also apply our results to the simple harmonic urn, allowing us to sharpen existing results and to verify a conjecture of Crane et al. (C) 2013 Elsevier B.V. All rights reserved.
【 授权许可】
Free
【 预 览 】
Files | Size | Format | View |
---|---|---|---|
10_1016_j_spa_2013_02_001.pdf | 348KB | download |