期刊论文详细信息
STOCHASTIC PROCESSES AND THEIR APPLICATIONS 卷:127
On the limiting law of the length of the longest common and increasing subsequences in random words
Article
Breton, Jean-Christophe1  Houdre, Christian2 
[1] Univ Rennes 1, IRMAR, UMR 6625, 263 Ave Gen Leclerc CS 74205, F-35042 Rennes, France
[2] Georgia Inst Technol, Sch Math, Atlanta, GA 30332 USA
关键词: Longest common subsequence;    Longest increasing subsequence;    Random words;    Random matrices;    Donsker's theorem;    Optimal alignment;    Last passage percolation;   
DOI  :  10.1016/j.spa.2016.09.005
来源: Elsevier
PDF
【 摘 要 】

Let X = (X-i)(i >= 1) and Y = (Y-i)(i >= 1) be two sequences of independent and identically distributed (iid) random variables taking their values, uniformly, in a common totally ordered finite alphabet. Let LCIn be the length of the longest common and (weakly) increasing subsequence of X-1 center dot center dot center dot X-n and Y-1 center dot center dot center dot Y-n. As n grows without bound, and when properly centered and scaled, LCIn is shown to converge, in distribution, towards a Brownian functional that we identify. (C) 2016 Elsevier B.V. All rights reserved.

【 授权许可】

Free   

【 预 览 】
附件列表
Files Size Format View
10_1016_j_spa_2016_09_005.pdf 653KB PDF download
  文献评价指标  
  下载次数:1次 浏览次数:0次