期刊论文详细信息
STOCHASTIC PROCESSES AND THEIR APPLICATIONS 卷:102
Logarithmic Sobolev constant for the dilute Ising lattice gas dynamics below the percolation threshold
Article
Cancrini, N ; Roberto, C
关键词: Kawasaki dynamics;    random ferromagnet;    logarithmic Sobolev constant;    equivalence of ensemble;   
DOI  :  10.1016/S0304-4149(02)00175-8
来源: Elsevier
PDF
【 摘 要 】

We consider a conservative stochastic lattice gas dynamics reversible with respect to the canonical Gibbs measure of the bond dilute Ising model on Z(d) at inverse temperature beta. When the bond dilution density p is below the percolation threshold, we prove that, for any epsilon > 0, any particle density and any beta, with probability one, the logarithmic Sobolev constant of the generator of the dynamics in a box of side L centered at the origin cannot grow faster that L2+epsilon. (C) 2002 Elsevier Science B.V. All rights reserved.

【 授权许可】

Free   

【 预 览 】
附件列表
Files Size Format View
10_1016_S0304-4149(02)00175-8.pdf 395KB PDF download
  文献评价指标  
  下载次数:0次 浏览次数:0次