期刊论文详细信息
STOCHASTIC PROCESSES AND THEIR APPLICATIONS 卷:123
Linear-fractional branching processes with countably many types
Article
Sagitov, Serik1,2 
[1] Chalmers, Gothenburg, Sweden
[2] Univ Gothenburg, Gothenburg, Sweden
关键词: Multivariate linear-fractional distribution;    Contour process;    Spinal representation;    Bienayme-Galton-Watson process;    Crump-Mode-Jagers process;    Malthusian parameter;    Perron-Frobenius theorem;    R-positive recurrence;    Renewal theory;   
DOI  :  10.1016/j.spa.2013.03.008
来源: Elsevier
PDF
【 摘 要 】

We study multi-type Bienayme-Galton-Watson processes with linear-fractional reproduction laws using various analytical tools like the contour process, spinal representation, Perron-Frobenius theorem for countable matrices, and renewal theory. For this special class of branching processes with countably many types we present a transparent criterion for R-positive recurrence with respect to the type space. This criterion appeals to the Malthusian parameter and the mean age at childbearing of the associated linear-fractional Crump-Mode-Jagers process. (C) 2013 Elsevier B.V. All rights reserved.

【 授权许可】

Free   

【 预 览 】
附件列表
Files Size Format View
10_1016_j_spa_2013_03_008.pdf 233KB PDF download
  文献评价指标  
  下载次数:6次 浏览次数:1次