期刊论文详细信息
STOCHASTIC PROCESSES AND THEIR APPLICATIONS 卷:127
Normal approximation and almost sure central limit theorem for non-symmetric Rademacher functionals
Article
Zheng, Guangqu1 
[1] Univ Luxembourg, URM, 6 Rue Richard Coudenhove Kalergi, L-1359 Luxembourg, Luxembourg
关键词: Rademacher functional;    Normal approximation;    Wasserstein distance;    Almost sure central limit theorem;    Malliavin-Stein approach;   
DOI  :  10.1016/j.spa.2016.09.002
来源: Elsevier
PDF
【 摘 要 】

In this work, we study the normal approximation and almost sure central limit theorems for some functionals of an independent sequence of Rademacher random variables. In particular, we provide a new chain rule that improves the one derived by Nourdin et al. (2010) and then we deduce the bound on Wasserstein distance for normal approximation using the (discrete) Malliavin-Stein approach. Besides, we are able to give the almost sure central limit theorem for a sequence of random variables inside a fixed Rademacher chaos using the Ibragimov-Lifshits criterion. (C) 2016 Elsevier B.V. All rights reserved.

【 授权许可】

Free   

【 预 览 】
附件列表
Files Size Format View
10_1016_j_spa_2016_09_002.pdf 494KB PDF download
  文献评价指标  
  下载次数:7次 浏览次数:1次