期刊论文详细信息
STOCHASTIC PROCESSES AND THEIR APPLICATIONS 卷:130
Random walk Metropolis algorithm in high dimension with non-Gaussian target distributions
Article
Kamatani, Kengo1,2 
[1] Osaka Univ, Grad Sch Engn Sci, 1-3 Machikaneyama Cho, Toyonaka, Osaka 5608531, Japan
[2] Osaka Univ, Ctr Math Modeling & Data Sci, 1-3 Machikaneyama Cho, Toyonaka, Osaka 5608531, Japan
关键词: Markov chain;    Diffusion limit;    Consistency;    Monte Carlo;    Stein's method;   
DOI  :  10.1016/j.spa.2019.03.002
来源: Elsevier
PDF
【 摘 要 】

High-dimensional asymptotics of the random walk Metropolis Hastings algorithm are well understood for a class of light-tailed target distributions. Although this idealistic assumption is instructive, it may not always be appropriate, especially for complicated target distributions. We here study heavy-tailed target distributions for the random walk Metropolis algorithms. When the number of dimensions is d, the rate of consistency is d(2) and the calculation cost is O(d(3)), which might be too expensive in high dimension. (C) 2019 Elsevier B.V. All rights reserved.

【 授权许可】

Free   

【 预 览 】
附件列表
Files Size Format View
10_1016_j_spa_2019_03_002.pdf 497KB PDF download
  文献评价指标  
  下载次数:1次 浏览次数:0次