期刊论文详细信息
STOCHASTIC PROCESSES AND THEIR APPLICATIONS 卷:126
Quantitative results for the Fleming-Viot particle system and quasi-stationary distributions in discrete space
Article
Cloez, Bertrand1,2  Thai, Marie-Noemie3 
[1] UMR INRA SupAgro MISTEA, Montpellier, France
[2] EPI INRA INRIA MODEMIC, Sophia Antipolis, France
[3] Univ Paris Est Marne La Vallee, Lab Anal & Math Appl, CNRS UMR8050, Marne La Vallee, France
关键词: Fleming-Viot process;    quasi-stationary distributions;    Coupling;    Wasserstein distance;    Chaos propagation;    Commutation relation;   
DOI  :  10.1016/j.spa.2015.09.016
来源: Elsevier
PDF
【 摘 要 】

We show, for a class of discrete Fleming-Viot (or Moran) type particle systems, that the convergence to the equilibrium is exponential for a suitable Wasserstein coupling distance. The approach provides an explicit quantitative estimate on the rate of convergence. As a consequence, we show that the conditioned process converges exponentially fast to a unique quasi-stationary distribution. Moreover, by estimating the two-particle correlations, we prove that the Fleming-Viot process converges, uniformly in time, to the conditioned process with an explicit rate of convergence. We illustrate our results on the examples of the complete graph and of N particles jumping on two points. (C) 2015 Elsevier B.V. All rights reserved.

【 授权许可】

Free   

【 预 览 】
附件列表
Files Size Format View
10_1016_j_spa_2015_09_016.pdf 278KB PDF download
  文献评价指标  
  下载次数:1次 浏览次数:0次