期刊论文详细信息
STOCHASTIC PROCESSES AND THEIR APPLICATIONS 卷:140
Irreducible decomposition for Markov processes
Article
Kuwae, Kazuhiro1 
[1] Fukuoka Univ, Fac Sci, Dept Appl Math, Fukuoka 8140180, Japan
关键词: Semi-Dirichlet forms;    Ergodicity;    Irreducibility;    Absolute continuity condition;    Quasi-Lindelof property;    Chacon-Ornstein ergodic theorem;   
DOI  :  10.1016/j.spa.2021.06.012
来源: Elsevier
PDF
【 摘 要 】

We prove an irreducible decomposition for Markov processes associated with quasi-regular symmetric Dirichlet forms or local semi-Dirichlet forms under the absolute continuity condition of transition probability with respect to the underlying measure. We do not assume the conservativeness nor the existence of invariant measures for the processes. As applications, we establish a concrete expression for Chacon-Ornstein type ratio ergodic theorem for such Markov processes and show a compactness of semi-groups under the Green-tightness of measures in the framework of symmetric resolvent strong Feller processes without irreducibility. (C) 2021 Elsevier B.V. All rights reserved.

【 授权许可】

Free   

【 预 览 】
附件列表
Files Size Format View
10_1016_j_spa_2021_06_012.pdf 1720KB PDF download
  文献评价指标  
  下载次数:2次 浏览次数:0次