期刊论文详细信息
STOCHASTIC PROCESSES AND THEIR APPLICATIONS 卷:122
Long time asymptotics of a Brownian particle coupled with a random environment with non-diffusive feedback force
Article
Ottobre, Michela
关键词: Anomalous diffusion;    Riemann-Liouville fractional derivative (integral);    Fractional Laplacian;    Continuous time random walk;    Levy flight;    Scaling limit;    Interface fluctuations;   
DOI  :  10.1016/j.spa.2011.11.008
来源: Elsevier
PDF
【 摘 要 】

We study the long time behavior of a Brownian particle moving in an anomalously diffusing field, the evolution of which depends on the particle position. We prove that the process describing the asymptotic behavior of the Brownian particle has bounded (in time) variance when the particle interacts with a subdiffusive field; when the interaction is with a superdiffusive field the variance of the limiting process grows in time as t(2 gamma-1), 1/2 < gamma < 1. Two different kinds of superdiffusing (random) environments are considered: one is described through the use of the fractional Laplacian; the other via the Riemann-Liouville fractional integral. The subdiffusive field is modeled through the Riemann-Liouville fractional derivative. (C) 2011 Elsevier B.V. All rights reserved.

【 授权许可】

Free   

【 预 览 】
附件列表
Files Size Format View
10_1016_j_spa_2011_11_008.pdf 370KB PDF download
  文献评价指标  
  下载次数:0次 浏览次数:0次