期刊论文详细信息
STOCHASTIC PROCESSES AND THEIR APPLICATIONS 卷:121
On the local time of random walk on the 2-dimensional comb
Article
Csaki, Endre1  Csoergo, Miklos2  Foeldes, Antonia3  Revesz, Pal4 
[1] Hungarian Acad Sci, Alfred Renyi Inst Math, H-1364 Budapest, Hungary
[2] Carleton Univ, Sch Math & Stat, Ottawa, ON K1S 5B6, Canada
[3] CUNY Coll Staten Isl, Dept Math, Staten Isl, NY 10314 USA
[4] Vienna Univ Technol, Inst Stat & Wahrscheinlichkeitstheorie, A-1040 Vienna, Austria
关键词: Random walk;    2-dimensional comb;    Strong approximation;    2-dimensional Wiener process;    Local time;    Laws of the iterated logarithm;    Iterated Brownian motion;   
DOI  :  10.1016/j.spa.2011.01.009
来源: Elsevier
PDF
【 摘 要 】

We study the path behaviour of general random walks, and that of their local times, on the 2-dimensional comb lattice C-2 that is obtained from Z(2) by removing all horizontal edges off the x-axis. We prove strong approximation results for such random walks and also for their local times. Concentrating mainly on the latter, we establish strong and weak limit theorems, including Strassen-type laws of the iterated logarithm, Hirsch-type laws, and weak convergence results in terms of functional convergence in distribution. (C) 2011 Elsevier B.V. All rights reserved.

【 授权许可】

Free   

【 预 览 】
附件列表
Files Size Format View
10_1016_j_spa_2011_01_009.pdf 310KB PDF download
  文献评价指标  
  下载次数:3次 浏览次数:0次