期刊论文详细信息
| STOCHASTIC PROCESSES AND THEIR APPLICATIONS | 卷:123 |
| Quenched central limit theorems for random walks in random scenery | |
| Article | |
| Guillotin-Plantard, Nadine1  Poisat, Julien2  | |
| [1] Univ Lyon 1, CNRS, UMR 5208, Inst Camille Jordan, F-69622 Villeurbanne, France | |
| [2] Leiden Univ, Math Inst, NL-2300 RA Leiden, Netherlands | |
| 关键词: Random walk in random scenery; Limit theorem; Local time; | |
| DOI : 10.1016/j.spa.2012.11.010 | |
| 来源: Elsevier | |
PDF
|
|
【 摘 要 】
Random walks in random scenery are processes defined by Z(n) := Sigma(n)(k=1) omega S-k where S := (S-k, k >= 0) is a random walk evolving in Z(d) and omega := (omega(x), x is an element of Z(d)) is a sequence of i.i.d. real random variables. Under suitable assumptions on the random walk S and the random scenery co, almost surely with respect to co, the correctly renormalized sequence (Z(n))(n >= 1) is proved to converge in distribution to a centered Gaussian law with explicit variance. (C) 2012 Elsevier B.V. All rights reserved.
【 授权许可】
Free
【 预 览 】
| Files | Size | Format | View |
|---|---|---|---|
| 10_1016_j_spa_2012_11_010.pdf | 248KB |
PDF