BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR BASIS OF DISEASE | 卷:1690 |
Transgenic mouse expressing human mutant α-galactosidase A in an endogenous enzyme deficient background:: a biochemical animal model for studying active-site specific chaperone therapy for Fabry disease | |
Article | |
Ishii, S ; Yoshioka, H ; Mannen, K ; Kulkarni, AB ; Fan, JQ | |
关键词: transgenic; alpha-galactosidase A; Fabry disease; active-site specific chaperone; 1-deoxygalactonojirimycin; | |
DOI : 10.1016/j.bbadis.2004.07.001 | |
来源: Elsevier | |
【 摘 要 】
Fabry disease is an inborn error of glycosphingolipid metabolism caused by the deficiency of lysosomal alpha-galactosidase A (alpha-Gal A). We have established transgenic mice that exclusively express human mutant alpha-Gal A (R301Q) in an alpha-Gal A knock-out background (TgM/KO mice). This serves as a biochemical model to study and evaluate active-site specific chaperone (ASSC) therapy for Fabry disease, which is specific for those missense mutations that cause misfolding of alpha-Gal A. The alpha-Gal A activities in the heart, kidney, spleen, and liver of homozygous TgM/KO mice were 52.6, 9.9, 29.6 and 44.4 unit/mg protein, respectively, corresponding to 16.4-, 0.8-, 0.6- and 1.4-fold of the endogenous enzyme activities in the same tissues of non-transgenic mice with a similar genetic background. Oral administration of 1-deoxygalactonojirimycin (DGJ), a competitive inhibitor of alpha-Gal A and an effective ASSC for Fabry disease, at 0.05 mM in the drinking water of the mice for 2 weeks resulted in 13.8-, 3.3-, 3.9-, and 2.6-fold increases in enzyme activities in the heart, kidney, spleen and liver, respectively. No accumulation of globotriaosylceramide, a natural substrate of alpha-Gal A, could be detected in the heart of TgM/KO mice after DGJ treatment, indicating that degradation of the glycolipid in the heart was not inhibited by DGJ at that dosage. The alpha-Gal A activity in homozygous or heterozygous fibroblasts established from TgM/KO mice (TMK cells) was approximately 39 and 20 unit/mg protein, respectively. These TgM/KO mice and TMK cells are useful tools for studying the mechanism of ASSC therapy, and for screening ASSCs for Fabry disease. (C) 2004 Elsevier B.V. All rights reserved.
【 授权许可】
Free
【 预 览 】
Files | Size | Format | View |
---|---|---|---|
10_1016_j_bbadis_2004_07_001.pdf | 238KB | download |