期刊论文详细信息
Frontiers in Plant Science
Silicon-based anti-herbivore defense in tropical tree seedlings
Plant Science
Bettina M. J. Engelbrecht1  Jörg Schaller2  Marius Klotz3 
[1] Deptartment of Plant Ecology, Bayreuth Center of Ecology and Environmental Research (BayCEER), University of Bayreuth, Bayreuth, Germany;Smithsonian Tropical Research Institute (STRI), Balboa, Panama;Leibniz Centre for Agricultural Landscape Research (ZALF), Müncheberg, Germany;Leibniz Centre for Agricultural Landscape Research (ZALF), Müncheberg, Germany;Deptartment of Plant Ecology, Bayreuth Center of Ecology and Environmental Research (BayCEER), University of Bayreuth, Bayreuth, Germany;
关键词: silica;    plant defense;    phytoliths;    interspecific variation;    herbivory;   
DOI  :  10.3389/fpls.2023.1250868
 received in 2023-06-30, accepted in 2023-10-02,  发布年份 2023
来源: Frontiers
PDF
【 摘 要 】

Silicon-based defenses deter insect herbivores in many cultivated and wild grass species. Furthermore, in some of these species, silicon (Si) uptake and defense can be induced by herbivory. Tropical trees also take up Si and leaf Si concentrations vary greatly across and within species. As herbivory is a major driver of seedling mortality and niche differentiation of tropical tree species, understanding anti-herbivore defenses is pivotal. Yet, whether silicon is a constitutive and inducible herbivory defense in tropical forest tree species remains unknown. We grew seedlings of eight tropical tree species in a full factorial experiment, including two levels of plant-available soil Si concentrations (-Si/+Si) and a simulated herbivory treatment (-H/+H). The simulated herbivory treatment was a combination of clipping and application of methyl jasmonate. We then carried out multiple-choice feeding trials, separately for each tree species, in which leaves of each treatment combination were offered to a generalist caterpillar (Spodoptera frugiperda). Leaf damage was assessed. Three species showed a significant decrease in leaf damage under high compared to low Si conditions (by up to 72%), consistent with our expectation of Si-based defenses acting in tropical tree species. In one species, leaf damage was increased by increasing soil Si and in four species, no effect of soil Si on leaf damage was observed. Opposite to our expectation of Si uptake and defense being inducible by herbivory damage, simulated herbivory increased leaf damage in two species. Furthermore, simulated herbivory reduced Si concentrations in one species. Our results showed that tropical tree seedlings can be better defended when growing in Si-rich compared to Si-poor soils, and that the effects of Si on plant defense vary strongly across species. Furthermore, Si-based defenses may not be inducible in tropical tree species. Overall, constitutive Si-based defense should be considered part of the vast array of anti-herbivore defenses of tropical tree species. Our finding that Si-based defenses are highly species-specific combined with the fact that herbivory is a major driver of mortality in tropical tree seedling, suggests that variation in soil Si concentrations may have pervasive consequences for regeneration and performance across tropical tree species.

【 授权许可】

Unknown   
Copyright © 2023 Klotz, Schaller and Engelbrecht

【 预 览 】
附件列表
Files Size Format View
RO202311149131063ZK.pdf 1294KB PDF download
  文献评价指标  
  下载次数:1次 浏览次数:0次