期刊论文详细信息
BMC Bioinformatics
Unsupervised gene set testing based on random matrix theory
Methodology Article
H. Robert Frost1  Christopher I. Amos1 
[1] Department of Biomedical Data Science, Geisel School of Medicine, Dartmouth College, 03755, Hanover, NH, USA;
关键词: Gene set testing;    Pathway analysis;    Random matrix theory;    Tracy-Widom;    Marc̆enko-Pastur;   
DOI  :  10.1186/s12859-016-1299-8
 received in 2016-09-02, accepted in 2016-10-21,  发布年份 2016
来源: Springer
PDF
【 摘 要 】

BackgroundGene set testing, or pathway analysis, is a bioinformatics technique that performs statistical testing on biologically meaningful sets of genomic variables. Although originally developed for supervised analyses, i.e., to test the association between gene sets and an outcome variable, gene set testing also has important unsupervised applications, e.g., p-value weighting. For unsupervised testing, however, few effective gene set testing methods are available with support especially poor for several biologically relevant use cases.ResultsIn this paper, we describe two new unsupervised gene set testing methods based on random matrix theory, the Marc̆enko-Pastur Distribution Test (MPDT) and the Tracy-Widom Test (TWT), that support both self-contained and competitive null hypotheses. For the self-contained case, we contrast our proposed tests with the classic multivariate test based on a modified likelihood ratio criterion. For the competitive case, we compare the new tests against a competitive version of the classic test and our recently developed Spectral Gene Set Enrichment (SGSE) method. Evaluation of the TWT and MPDT methods is based on both simulation studies and a weighted p-value analysis of two real gene expression data sets using gene sets drawn from MSigDB collections.ConclusionsThe MPDT and TWT methods are novel and effective tools for unsupervised gene set analysis with superior statistical performance relative to existing techniques and the ability to generate biologically important results on real genomic data sets.

【 授权许可】

CC BY   
© The Author(s) 2016

【 预 览 】
附件列表
Files Size Format View
RO202311109803929ZK.pdf 538KB PDF download
MediaObjects/40249_2023_1146_MOESM13_ESM.xls 73KB Other download
MediaObjects/12888_2023_5281_MOESM1_ESM.docx 14KB Other download
Fig. 5 181KB Image download
Fig. 7 684KB Image download
Fig. 2 536KB Image download
Fig. 1 258KB Image download
MediaObjects/12888_2023_5208_MOESM1_ESM.docx 7KB Other download
Fig. 8 780KB Image download
Fig. 3 2506KB Image download
12936_2016_1316_Article_IEq8.gif 1KB Image download
12951_2017_255_Article_IEq33.gif 1KB Image download
MediaObjects/12951_2023_2144_MOESM1_ESM.docx 15232KB Other download
12951_2017_255_Article_IEq34.gif 1KB Image download
12951_2015_155_Article_IEq53.gif 1KB Image download
MediaObjects/13046_2023_2843_MOESM2_ESM.docx 5319KB Other download
12951_2015_155_Article_IEq54.gif 1KB Image download
Fig. 2 159KB Image download
Fig. 1 191KB Image download
MediaObjects/40538_2023_474_MOESM8_ESM.xls 17KB Other download
Fig. 1 167KB Image download
MediaObjects/40538_2023_474_MOESM9_ESM.xlsx 13KB Other download
Fig. 2 1630KB Image download
12936_2017_1932_Article_IEq37.gif 1KB Image download
Fig. 1 442KB Image download
Fig. 3 379KB Image download
12936_2017_1963_Article_IEq63.gif 1KB Image download
Fig. 1 400KB Image download
Fig. 1 51KB Image download
Fig. 2 88KB Image download
Fig. 2 47KB Image download
Fig. 2 80KB Image download
12951_2017_255_Article_IEq36.gif 1KB Image download
Fig. 3 42KB Image download
12951_2015_155_Article_IEq56.gif 1KB Image download
Fig. 2 576KB Image download
MediaObjects/12888_2023_5265_MOESM1_ESM.xlsx 198KB Other download
Fig. 2 192KB Image download
12936_2017_2045_Article_IEq3.gif 1KB Image download
Fig. 5 969KB Image download
12936_2017_2045_Article_IEq5.gif 1KB Image download
MediaObjects/12888_2023_5265_MOESM2_ESM.docx 14KB Other download
Fig. 3 200KB Image download
Fig. 1 1829KB Image download
Fig. 1 245KB Image download
12936_2017_2075_Article_IEq66.gif 1KB Image download
MediaObjects/13049_2023_1131_MOESM1_ESM.docx 18KB Other download
Fig. 5 169KB Image download
Fig. 3 235KB Image download
12951_2015_155_Article_IEq57.gif 1KB Image download
Fig. 6 797KB Image download
12951_2015_155_Article_IEq58.gif 1KB Image download
12864_2016_3440_Article_IEq6.gif 1KB Image download
Fig. 4 270KB Image download
12864_2016_3440_Article_IEq8.gif 1KB Image download
MediaObjects/13046_2023_2843_MOESM3_ESM.docx 27KB Other download
Fig. 2 194KB Image download
Fig. 7 245KB Image download
【 图 表 】

Fig. 7

Fig. 2

12864_2016_3440_Article_IEq8.gif

Fig. 4

12864_2016_3440_Article_IEq6.gif

12951_2015_155_Article_IEq58.gif

Fig. 6

12951_2015_155_Article_IEq57.gif

Fig. 3

Fig. 5

12936_2017_2075_Article_IEq66.gif

Fig. 1

Fig. 1

Fig. 3

12936_2017_2045_Article_IEq5.gif

Fig. 5

12936_2017_2045_Article_IEq3.gif

Fig. 2

Fig. 2

12951_2015_155_Article_IEq56.gif

Fig. 3

12951_2017_255_Article_IEq36.gif

Fig. 2

Fig. 2

Fig. 2

Fig. 1

Fig. 1

12936_2017_1963_Article_IEq63.gif

Fig. 3

Fig. 1

12936_2017_1932_Article_IEq37.gif

Fig. 2

Fig. 1

Fig. 1

Fig. 2

12951_2015_155_Article_IEq54.gif

12951_2015_155_Article_IEq53.gif

12951_2017_255_Article_IEq34.gif

12951_2017_255_Article_IEq33.gif

12936_2016_1316_Article_IEq8.gif

Fig. 3

Fig. 8

Fig. 1

Fig. 2

Fig. 7

Fig. 5

【 参考文献 】
  • [1]
  • [2]
  • [3]
  • [4]
  • [5]
  • [6]
  • [7]
  • [8]
  • [9]
  • [10]
  • [11]
  • [12]
  • [13]
  • [14]
  • [15]
  • [16]
  • [17]
  • [18]
  • [19]
  • [20]
  • [21]
  • [22]
  • [23]
  • [24]
  • [25]
  • [26]
  • [27]
  • [28]
  • [29]
  • [30]
  • [31]
  • [32]
  • [33]
  • [34]
  • [35]
  • [36]
  • [37]
  • [38]
  • [39]
  文献评价指标  
  下载次数:5次 浏览次数:1次