期刊论文详细信息
Lipids in Health and Disease
Are post-treatment low-density lipoprotein subclass pattern analyses potentially misleading?
Research
Lawrence A Leiter1  Harold Bays2  Scott Conard3  Steven Bird4  Erin Jensen4  Andrew M Tershakovec4  Arvind Shah4  Mary E Hanson4 
[1] Keenan Research Centre in the Li Ka Shing Knowledge Institute of St. Michael's Hospital and the University of Toronto, Toronto, ON, Canada;Louisville Metabolic and Atherosclerosis Research Center, Louisville, KY, USA;Medical Edge Healthcare Group, P.A., Dallas, TX, USA;Merck, Sharp & Dohme Corp., a div. of Merck & Co., Inc., Whitehouse Station, NJ, USA;
关键词: Atorvastatin;    Ezetimibe;    Lipoprotein Subclass;    Lipoprotein Particle Size;    Baseline Triglyceride Level;   
DOI  :  10.1186/1476-511X-9-136
 received in 2010-10-26, accepted in 2010-11-30,  发布年份 2010
来源: Springer
PDF
【 摘 要 】

BackgroundSome patients administered cholesterol-lowering therapies may experience an increase in the proportion of small LDL particles, which may be misinterpreted as a worsening of atherosclerotic coronary heart disease risk. This study assessed the lipid effects of adding ezetimibe to atorvastatin or doubling the atorvastatin dose on low-density lipoprotein cholesterol (LDL-C) levels (and the cholesterol content of LDL subclasses), LDL particle number (approximated by apolipoprotein B), and LDL particle size. This was a multicenter, double-blind, randomized, parallel-group study of hypercholesterolemic, high atherosclerotic coronary heart disease risk patients. After stabilization of atorvastatin 40 mg, 579 patients with LDL-C >70 mg/dL were randomized to 6 weeks of ezetimibe + atorvastatin 40 mg or atorvastatin 80 mg. Efficacy parameters included changes from baseline in LDL-C, apolipoprotein B, non-high-density lipoprotein cholesterol (non-HDL-C), and lipoprotein subclasses (Vertical Auto Profile II) and pattern for the overall population, as well as patient subgroups with baseline triglyceride levels <150 mg/dL or ≥150 mg/dL.ResultsBoth treatments significantly reduced LDL-C (and the cholesterol content of most LDL subfractions [LDL1-4]) apolipoprotein B, non-HDL-C levels, but did not reduce the proportion of smaller, more dense LDL particles; in fact, the proportion of Pattern B was numerically increased. Results were generally similar in patients with triglyceride levels <150 or ≥150 mg/dL.ConclusionsWhen assessing the effects of escalating cholesterol-lowering therapy, effects upon Pattern B alone to assess coronary heart disease risk may be misleading when interpreted without considerations of other lipid effects, such as reductions in LDL-C, atherogenic lipoprotein particle concentration, and non-HDL-C levels.Trial Registration(Registered at clinicaltrials.gov: Clinical trial # NCT00276484)

【 授权许可】

CC BY   
© Bays et al; licensee BioMed Central Ltd. 2010. This article is published under license to BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

【 预 览 】
附件列表
Files Size Format View
RO202311109670608ZK.pdf 583KB PDF download
【 参考文献 】
  • [1]
  • [2]
  • [3]
  • [4]
  • [5]
  • [6]
  • [7]
  • [8]
  • [9]
  • [10]
  • [11]
  • [12]
  • [13]
  • [14]
  • [15]
  • [16]
  • [17]
  • [18]
  • [19]
  • [20]
  • [21]
  • [22]
  • [23]
  • [24]
  • [25]
  • [26]
  • [27]
  • [28]
  • [29]
  • [30]
  • [31]
  • [32]
  • [33]
  • [34]
  • [35]
  • [36]
  • [37]
  • [38]
  • [39]
  • [40]
  • [41]
  文献评价指标  
  下载次数:11次 浏览次数:2次