期刊论文详细信息
BMC Evolutionary Biology
Why and how genetic canalization evolves in gene regulatory networks
Research Article
Estelle Rünneburger1  Arnaud Le Rouzic1 
[1] Laboratoire Évolution, Génomes, Comportement, Écologie, CNRS–IRD–Univ. Paris-Sud–Université Paris-Saclay, 91198, Gif-sur-Yvette, France;
关键词: Genetic architecture;    Quantitative genetics;    Individual-based simulations;    Evolution of epistasis;   
DOI  :  10.1186/s12862-016-0801-2
 received in 2016-05-13, accepted in 2016-10-14,  发布年份 2016
来源: Springer
PDF
【 摘 要 】

BackgroundGenetic canalization reflects the capacity of an organism’s phenotype to remain unchanged in spite of mutations. As selection on genetic canalization is weak and indirect, whether or not genetic canalization can reasonably evolve in complex genetic architectures is still an open question. In this paper, we use a quantitative model of gene regulatory network to describe the conditions in which substantial canalization is expected to emerge in a stable environment.ResultsThrough an individual-based simulation framework, we confirmed that most parameters associated with the network topology (complexity and size of the network) have less influence than mutational parameters (rate and size of mutations) on the evolution of genetic canalization. We also established that selecting for extreme phenotypic optima (nil or full gene expression) leads to much higher canalization levels than selecting for intermediate expression levels. Overall, constrained networks evolve less canalization than networks in which some genes could evolve freely (i.e. without direct stabilizing selection pressure on gene expression).ConclusionsTaken together, these results lead us to propose a two-fold mechanism involved in the evolution of genetic canalization in gene regulatory networks: the shrinkage of mutational target (useless genes are virtually removed from the network) and redundancy in gene regulation (so that some regulatory factors can be lost without affecting gene expression).

【 授权许可】

CC BY   
© The Author(s) 2016

【 预 览 】
附件列表
Files Size Format View
RO202311109285359ZK.pdf 890KB PDF download
12888_2023_5283_Article_IEq2.gif 1KB Image download
12936_2023_4742_Article_IEq9.gif 1KB Image download
MediaObjects/12974_2023_2931_MOESM1_ESM.docx 1856KB Other download
Fig. 1 220KB Image download
Fig. 1 427KB Image download
Fig. 7 2645KB Image download
Fig. 3 2186KB Image download
MediaObjects/12888_2023_5250_MOESM2_ESM.docx 22KB Other download
Fig. 3 390KB Image download
MediaObjects/12888_2023_5250_MOESM3_ESM.docx 27KB Other download
Fig. 4 201KB Image download
MediaObjects/12888_2023_5250_MOESM4_ESM.docx 21KB Other download
Fig. 6 2050KB Image download
Fig. 4 463KB Image download
Fig. 3 2960KB Image download
Fig. 2 199KB Image download
Fig. 5 463KB Image download
Fig. 2 367KB Image download
12936_2023_4742_Article_IEq18.gif 1KB Image download
Fig. 1 108KB Image download
MediaObjects/40249_2023_1143_MOESM1_ESM.docx 47KB Other download
MediaObjects/40249_2023_1143_MOESM2_ESM.docx 23KB Other download
Fig. 2 314KB Image download
Fig. 2 391KB Image download
Fig. 4 987KB Image download
【 图 表 】

Fig. 4

Fig. 2

Fig. 2

Fig. 1

12936_2023_4742_Article_IEq18.gif

Fig. 2

Fig. 5

Fig. 2

Fig. 3

Fig. 4

Fig. 6

Fig. 4

Fig. 3

Fig. 3

Fig. 7

Fig. 1

Fig. 1

12936_2023_4742_Article_IEq9.gif

12888_2023_5283_Article_IEq2.gif

【 参考文献 】
  • [1]
  • [2]
  • [3]
  • [4]
  • [5]
  • [6]
  • [7]
  • [8]
  • [9]
  • [10]
  • [11]
  • [12]
  • [13]
  • [14]
  • [15]
  • [16]
  • [17]
  • [18]
  • [19]
  • [20]
  • [21]
  • [22]
  • [23]
  • [24]
  • [25]
  • [26]
  • [27]
  • [28]
  • [29]
  • [30]
  • [31]
  • [32]
  • [33]
  • [34]
  • [35]
  • [36]
  文献评价指标  
  下载次数:2次 浏览次数:1次