BMC Bioinformatics | |
A protein-dependent side-chain rotamer library | |
Proceedings | |
Xin Gao1  Md Shariful Islam Bhuyan1  | |
[1] Mathematical and Computer Sciences and Engineering Division, King Abdullah University of Science and Technology, 23955, Thuwal, KSA; | |
关键词: Marginal Distribution; Markov Random Field; Tree Decomposition; Interaction Graph; Inference Algorithm; | |
DOI : 10.1186/1471-2105-12-S14-S10 | |
来源: Springer | |
【 摘 要 】
BackgroundProtein side-chain packing problem has remained one of the key open problems in bioinformatics. The three main components of protein side-chain prediction methods are a rotamer library, an energy function and a search algorithm. Rotamer libraries summarize the existing knowledge of the experimentally determined structures quantitatively. Depending on how much contextual information is encoded, there are backbone-independent rotamer libraries and backbone-dependent rotamer libraries. Backbone-independent libraries only encode sequential information, whereas backbone-dependent libraries encode both sequential and locally structural information. However, side-chain conformations are determined by spatially local information, rather than sequentially local information. Since in the side-chain prediction problem, the backbone structure is given, spatially local information should ideally be encoded into the rotamer libraries.MethodsIn this paper, we propose a new type of backbone-dependent rotamer library, which encodes structural information of all the spatially neighboring residues. We call it protein-dependent rotamer libraries. Given any rotamer library and a protein backbone structure, we first model the protein structure as a Markov random field. Then the marginal distributions are estimated by the inference algorithms, without doing global optimization or search. The rotamers from the given library are then re-ranked and associated with the updated probabilities.ResultsExperimental results demonstrate that the proposed protein-dependent libraries significantly outperform the widely used backbone-dependent libraries in terms of the side-chain prediction accuracy and the rotamer ranking ability. Furthermore, without global optimization/search, the side-chain prediction power of the protein-dependent library is still comparable to the global-search-based side-chain prediction methods.
【 授权许可】
CC BY
© Bhuyan and Gao; licensee BioMed Central Ltd. 2011
【 预 览 】
Files | Size | Format | View |
---|---|---|---|
RO202311109214329ZK.pdf | 818KB | download |
【 参考文献 】
- [1]
- [2]
- [3]
- [4]
- [5]
- [6]
- [7]
- [8]
- [9]
- [10]
- [11]
- [12]
- [13]
- [14]
- [15]
- [16]
- [17]
- [18]
- [19]
- [20]
- [21]
- [22]
- [23]
- [24]
- [25]
- [26]
- [27]
- [28]
- [29]
- [30]
- [31]
- [32]
- [33]
- [34]
- [35]
- [36]
- [37]
- [38]
- [39]
- [40]
- [41]
- [42]