Reproductive Biology and Endocrinology | |
Follicle-stimulating hormone responsiveness in antral follicles from aryl hydrocarbon receptor knockout mice | |
Research | |
Liying Gao1  Bethany N Karman1  Mallikarjuna S Basavarajappa1  Tessie Paulose1  Stacey L Bunting1  Jackye Peretz1  Jodi A Flaws1  Isabel Hernández-Ochoa2  | |
[1] Department of Comparative Biosciences, University of Illinois, Urbana-Champaign, 61802, Illinois, USA;Department of Comparative Biosciences, University of Illinois, Urbana-Champaign, 61802, Illinois, USA;Departamento de Toxicología, Cinvestav-IPN, México, D F 07360, México; | |
关键词: Aryl hydrocarbon receptor; Ovary; Follicle growth; FSH; Inhibin A; Steroidogenesis; | |
DOI : 10.1186/1477-7827-11-26 | |
received in 2013-02-04, accepted in 2013-03-22, 发布年份 2013 | |
来源: Springer | |
【 摘 要 】
BackgroundPrevious studies have demonstrated that pre-pubertal aryl hydrocarbon receptor knockout (AHRKO) mice have slow antral follicle growth and reduced capacity to produce estradiol compared to wild-type (WT) mice. Although previous studies have suggested that this is likely due to a reduced ability of the AHRKO follicles to respond to follicle-stimulating hormone (FSH), this possibility was not directly tested. Thus, the goal of these studies was to test the hypothesis that low FSH responsiveness is responsible for the slow growth and reduced estradiol production observed in pre-pubertal AHRKO versus WT antral follicles.MethodsAntral follicles from WT and AHRKO mice were cultured with varying amounts of FSH (0–15 IU/mL) for up to 7 days, and subjected to measurements of growth, FSH receptor and steroidogenic regulator expression, sex steroid hormone levels, and inhibin beta-A expression. General linear models (GLM) for repeated measures were used to compare follicle diameters over time among treatments. If the global tests from GLM were significant, Tukey’s tests were used for pairwise comparisons. Remaining comparisons among groups were performed using one-way analysis of variance followed by Tukey’s post hoc test.ResultsThe results indicate that FSH stimulated growth in both WT and AHRKO follicles, but that high levels of FSH (10–15 IU/mL) were required for AHRKO follicles to reach maximal growth, whereas lower levels of FSH (5 IU/mL) were required for WT follicles to reach maximal growth. Further, FSH stimulated expression of FSH receptor, steroidogenic factors, and inhibin beta-A as well as production of steroid hormones in both WT and AHRKO follicles, but the degree of stimulation differed betw een WT and AHRKO follicles. Interestingly, FSH treatment increased expression of FSH receptor, some steroidogenic regulators, inhibin beta-A, and steroid hormone production more in AHRKO follicles compared to WT follicles.ConclusionsCollectively, these data suggest that the slow growth, but not reduced steroidogenesis in AHRKO follicles, is due to their reduced ability to respond to FSH compared to WT follicles. These data also suggest that the AHR may contribute to the ability of FSH to stimulate proper follicle growth, but it may not contribute to FSH-induced steroidogenesis.
【 授权许可】
Unknown
© Hernández-Ochoa et al.; licensee BioMed Central Ltd. 2013. This article is published under license to BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
【 预 览 】
Files | Size | Format | View |
---|---|---|---|
RO202311109023578ZK.pdf | 575KB | download |
【 参考文献 】
- [1]
- [2]
- [3]
- [4]
- [5]
- [6]
- [7]
- [8]
- [9]
- [10]
- [11]
- [12]
- [13]
- [14]
- [15]
- [16]
- [17]
- [18]
- [19]
- [20]
- [21]
- [22]
- [23]
- [24]
- [25]
- [26]
- [27]
- [28]
- [29]
- [30]
- [31]
- [32]
- [33]
- [34]