期刊论文详细信息
Proteome Science
Proteomic analysis of shoot tissue during photoperiod induced growth cessation in V. riparia Michx. grapevines
Research
Anne Y Fennell1  Kim J Victor1  Jérôme Grimplet2 
[1] Department of Horticulture, Forestry, Landscape, & Parks, South Dakota State University, Box 2140A, 57007, Brookings, SD, USA;Department of Horticulture, Forestry, Landscape, & Parks, South Dakota State University, Box 2140A, 57007, Brookings, SD, USA;Instituto de Ciencias de la Vid y del Vino (CSIC, Universidad de La Rioja, Gobierno de La Rioja), 26006, Longroño, Spain;
关键词: Glutamine Synthetase;    Protein Spot;    Cinnamyl Alcohol Dehydrogenase;    Short Photoperiod;    Growth Cessation;   
DOI  :  10.1186/1477-5956-8-44
 received in 2010-04-05, accepted in 2010-08-12,  发布年份 2010
来源: Springer
PDF
【 摘 要 】

BackgroundGrowth cessation, cold acclimation and dormancy induction in grapevines and other woody perennial plants native to temperate continental climates is frequently triggered by short photoperiods. The early induction of these processes by photoperiod promotes winter survival of grapevines in cold temperate zones. Examining the molecular processes, in particular the proteomic changes in the shoot, will provide greater insight into the signaling cascade that initiates growth cessation and dormancy induction. To begin understanding transduction of the photoperiod signal, Vitis riparia Michx. grapevines that had grown for 35 days in long photoperiod (long day, LD, 15 h) were subjected to either a continued LD or a short photoperiod (short day, SD, 13 h) treatment. Shoot tips (4-node shoot terminals) were collected from each treatment at 7 and 28 days of LD and SD for proteomic analysis via two-dimensional (2D) gel electrophoresis.ResultsProtein profiles were characterized in V. riparia shoot tips during active growth or SD induced growth cessation to examine physiological alterations in response to differential photoperiod treatments. A total of 1054 protein spots were present on the 2D gels. Among the 1054 proteins, 216 showed differential abundance between LD and SD (≥ two-fold ratio, p-value ≤ 0.05). After 7 days, 39 protein spots were more abundant in LD and 30 were more abundant in SD. After 28 days, 93 protein spots were more abundant in LD and 54 were more abundant in SD. MS/MS spectrometry was performed to determine the functions of the differentially abundant proteins.ConclusionsThe proteomics analysis uncovered a portion of the signal transduction involved in V. riparia grapevine growth cessation and dormancy induction. Different enzymes of the Calvin-Benson cycle and glutamate synthetase isoforms were more abundant either in LD or SD treatments. In LD tissues the significantly differentially more abundant proteins included flavonoid biosynthesis and polyphenol enzymes, cinnamyl alcohol dehydrogenase, and TCP-1 complexes. In the SD tissue photorespiratory proteins were more abundant than in the LD. The significantly differentially more abundant proteins in SD were involved in ascorbate biosynthesis, photosystem II and photosystem I subunits, light harvesting complexes, and carboxylation enzymes.

【 授权许可】

Unknown   
© Victor et al; licensee BioMed Central Ltd. 2010. This article is published under license to BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

【 预 览 】
附件列表
Files Size Format View
RO202311108960868ZK.pdf 4206KB PDF download
【 参考文献 】
  • [1]
  • [2]
  • [3]
  • [4]
  • [5]
  • [6]
  • [7]
  • [8]
  • [9]
  • [10]
  • [11]
  • [12]
  • [13]
  • [14]
  • [15]
  • [16]
  • [17]
  • [18]
  • [19]
  • [20]
  • [21]
  • [22]
  • [23]
  • [24]
  • [25]
  • [26]
  • [27]
  • [28]
  • [29]
  • [30]
  • [31]
  • [32]
  • [33]
  • [34]
  • [35]
  • [36]
  • [37]
  • [38]
  • [39]
  • [40]
  • [41]
  • [42]
  • [43]
  • [44]
  • [45]
  • [46]
  • [47]
  • [48]
  • [49]
  • [50]
  • [51]
  • [52]
  • [53]
  • [54]
  • [55]
  • [56]
  • [57]
  • [58]
  • [59]
  • [60]
  • [61]
  • [62]
  • [63]
  • [64]
  • [65]
  • [66]
  • [67]
  • [68]
  • [69]
  文献评价指标  
  下载次数:11次 浏览次数:1次