期刊论文详细信息
BMC Bioinformatics
Prediction of GTP interacting residues, dipeptides and tripeptides in a protein from its evolutionary information
Research Article
Gajendra PS Raghava1  Jagat S Chauhan1  Nitish K Mishra1 
[1] Bioinformatics Centre, Institute of Microbial Technology (IMTECH), Sector 39-A, 160036, Chandigarh, India;
关键词: Support Vector Machine;    Support Vector Machine Model;    Matthews Correlation Coefficient;    Evolutionary Information;    Negative Pattern;   
DOI  :  10.1186/1471-2105-11-301
 received in 2010-02-11, accepted in 2010-06-03,  发布年份 2010
来源: Springer
PDF
【 摘 要 】

BackgroundGuanosine triphosphate (GTP)-binding proteins play an important role in regulation of G-protein. Thus prediction of GTP interacting residues in a protein is one of the major challenges in the field of the computational biology. In this study, an attempt has been made to develop a computational method for predicting GTP interacting residues in a protein with high accuracy (Acc), precision (Prec) and recall (Rc).ResultAll the models developed in this study have been trained and tested on a non-redundant (40% similarity) dataset using five-fold cross-validation. Firstly, we have developed neural network based models using single sequence and PSSM profile and achieved maximum Matthews Correlation Coefficient (MCC) 0.24 (Acc 61.30%) and 0.39 (Acc 68.88%) respectively. Secondly, we have developed a support vector machine (SVM) based models using single sequence and PSSM profile and achieved maximum MCC 0.37 (Prec 0.73, Rc 0.57, Acc 67.98%) and 0.55 (Prec 0.80, Rc 0.73, Acc 77.17%) respectively. In this work, we have introduced a new concept of predicting GTP interacting dipeptide (two consecutive GTP interacting residues) and tripeptide (three consecutive GTP interacting residues) for the first time. We have developed SVM based model for predicting GTP interacting dipeptides using PSSM profile and achieved MCC 0.64 with precision 0.87, recall 0.74 and accuracy 81.37%. Similarly, SVM based model have been developed for predicting GTP interacting tripeptides using PSSM profile and achieved MCC 0.70 with precision 0.93, recall 0.73 and accuracy 83.98%.ConclusionThese results show that PSSM based method performs better than single sequence based method. The prediction models based on dipeptides or tripeptides are more accurate than the traditional model based on single residue. A web server "GTPBinder" http://www.imtech.res.in/raghava/gtpbinder/ based on above models has been developed for predicting GTP interacting residues in a protein.

【 授权许可】

Unknown   
© Chauhan et al; licensee BioMed Central Ltd. 2010. This article is published under license to BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

【 预 览 】
附件列表
Files Size Format View
RO202311108772076ZK.pdf 904KB PDF download
【 参考文献 】
  • [1]
  • [2]
  • [3]
  • [4]
  • [5]
  • [6]
  • [7]
  • [8]
  • [9]
  • [10]
  • [11]
  • [12]
  • [13]
  • [14]
  • [15]
  • [16]
  • [17]
  • [18]
  • [19]
  • [20]
  • [21]
  • [22]
  • [23]
  • [24]
  • [25]
  • [26]
  • [27]
  • [28]
  • [29]
  • [30]
  • [31]
  • [32]
  • [33]
  文献评价指标  
  下载次数:5次 浏览次数:0次