期刊论文详细信息
Genetics Selection Evolution
Predicting direct and indirect breeding values for survival time in laying hens using repeated measures
Research Article
Roel F. Veerkamp1  Piter Bijma1  Esther D. Ellen1  Tessa Brinker1 
[1] Animal Breeding and Genomics Centre, Wageningen UR, P.O. Box 338, 6700 AH, Wageningen, The Netherlands;
关键词: Genetic Parameter;    Estimate Breeding Value;    Repeat Measure Model;    Cage Mate;    Monthly Survival;   
DOI  :  10.1186/s12711-015-0152-2
 received in 2015-05-26, accepted in 2015-09-11,  发布年份 2015
来源: Springer
PDF
【 摘 要 】

BackgroundMinimizing bird losses is important in the commercial layer industry. Selection against mortality is challenging because heritability is low, censoring is high, and individual survival depends on social interactions among cage members. With cannibalism, mortality depends not only on an individual’s own genes (direct genetic effects; DGE) but also on genes of its cage mates (indirect genetic effects; IGE). To date, studies using DGE–IGE models have focussed on survival time but their shortcomings are that censored records were considered as exact lengths of life and models assumed that IGE were continuously expressed by all cage members even after death. However, since dead animals no longer express IGE, IGE should ideally be time-dependent in the model. Neglecting censoring and timing of IGE expression may reduce accuracy of estimated breeding values (EBV). Thus, our aim was to improve prediction of breeding values for survival time in layers that present cannibalism.MethodsWe considered four DGE–IGE models to predict survival time in layers. One model was an analysis of survival time and the three others treated survival in consecutive months as a repeated binomial trait (repeated measures models). We also tested whether EBV were improved by including timing of IGE expression in the analyses. Approximate EBV accuracies were calculated by cross-validation. The models were fitted to survival data on two purebred White Leghorn layer lines W1 and WB, each having monthly survival records over 13 months.ResultsIncluding the timing of IGE expression in the DGE–IGE model reduced EBV accuracy compared to analysing survival time. EBV accuracy was higher when repeated measures models were used. However, there was no universal best model. Using repeated measures instead of analysing survival time increased EBV accuracy by 10 to 21 and 2 to 12 % for W1 and WB, respectively. We showed how EBV and variance components estimated with repeated measures models can be translated into survival time.ConclusionsOur results suggest that prediction of breeding values for survival time in laying hens can be improved using repeated measures models. This is an important result since more accurate EBV contribute to higher rates of genetic gain.

【 授权许可】

CC BY   
© Brinker et al. 2015

【 预 览 】
附件列表
Files Size Format View
RO202311108756964ZK.pdf 1352KB PDF download
Fig. 6 601KB Image download
Fig. 2 283KB Image download
Fig. 2 650KB Image download
Fig. 4 1482KB Image download
Fig. 1 395KB Image download
350KB Image download
Fig. 4 463KB Image download
Fig. 9 519KB Image download
Fig. 9 217KB Image download
42004_2023_1025_Article_IEq7.gif 1KB Image download
Fig. 2 256KB Image download
40517_2023_273_Article_IEq2.gif 1KB Image download
Fig. 1 205KB Image download
40517_2023_273_Article_IEq4.gif 1KB Image download
MediaObjects/40249_2023_1146_MOESM1_ESM.png 4112KB Other download
40517_2023_273_Article_IEq6.gif 1KB Image download
Fig. 2 679KB Image download
MediaObjects/41408_2023_929_MOESM1_ESM.pdf 265KB PDF download
40517_2023_273_Article_IEq9.gif 1KB Image download
MediaObjects/40517_2023_273_MOESM1_ESM.xlsx 103KB Other download
Fig. 1 48KB Image download
MediaObjects/13046_2023_2865_MOESM10_ESM.jpg 226KB Other download
Fig. 3 821KB Image download
Fig. 1 1445KB Image download
Fig. 4 532KB Image download
Fig. 2 1809KB Image download
Fig. 3 251KB Image download
Fig. 4 632KB Image download
MediaObjects/13046_2023_2865_MOESM12_ESM.jpg 421KB Other download
Fig. 8 80KB Image download
Fig. 4 718KB Image download
12951_2015_155_Article_IEq7.gif 1KB Image download
MediaObjects/13046_2023_2846_MOESM1_ESM.xlsx 18KB Other download
Fig. 9 69KB Image download
129KB Image download
Fig. 1 141KB Image download
Fig. 10 107KB Image download
Fig. 5 508KB Image download
Fig. 5 2497KB Image download
Fig. 3 318KB Image download
Fig. 2 119KB Image download
Fig. 7 354KB Image download
12864_2017_3527_Article_IEq9.gif 1KB Image download
Fig. 2 321KB Image download
MediaObjects/12902_2023_1474_MOESM1_ESM.docx 28KB Other download
MediaObjects/12888_2023_5278_MOESM1_ESM.docx 20KB Other download
MediaObjects/40249_2023_1146_MOESM2_ESM.png 8543KB Other download
MediaObjects/12888_2023_5278_MOESM2_ESM.docx 20KB Other download
12951_2015_155_Article_IEq9.gif 1KB Image download
MediaObjects/12888_2023_5278_MOESM3_ESM.docx 19KB Other download
Fig. 2 153KB Image download
12951_2015_155_Article_IEq12.gif 1KB Image download
12951_2015_155_Article_IEq13.gif 1KB Image download
12951_2015_155_Article_IEq14.gif 1KB Image download
Fig. 3 173KB Image download
12951_2015_155_Article_IEq16.gif 1KB Image download
【 图 表 】

12951_2015_155_Article_IEq16.gif

Fig. 3

12951_2015_155_Article_IEq14.gif

12951_2015_155_Article_IEq13.gif

12951_2015_155_Article_IEq12.gif

Fig. 2

12951_2015_155_Article_IEq9.gif

Fig. 2

12864_2017_3527_Article_IEq9.gif

Fig. 7

Fig. 2

Fig. 3

Fig. 5

Fig. 5

Fig. 10

Fig. 1

Fig. 9

12951_2015_155_Article_IEq7.gif

Fig. 4

Fig. 8

Fig. 4

Fig. 3

Fig. 2

Fig. 4

Fig. 1

Fig. 3

Fig. 1

40517_2023_273_Article_IEq9.gif

Fig. 2

40517_2023_273_Article_IEq6.gif

40517_2023_273_Article_IEq4.gif

Fig. 1

40517_2023_273_Article_IEq2.gif

Fig. 2

42004_2023_1025_Article_IEq7.gif

Fig. 9

Fig. 9

Fig. 4

Fig. 1

Fig. 4

Fig. 2

Fig. 2

Fig. 6

【 参考文献 】
  • [1]
  • [2]
  • [3]
  • [4]
  • [5]
  • [6]
  • [7]
  • [8]
  • [9]
  • [10]
  • [11]
  • [12]
  • [13]
  • [14]
  • [15]
  • [16]
  • [17]
  • [18]
  • [19]
  • [20]
  • [21]
  • [22]
  • [23]
  • [24]
  • [25]
  • [26]
  • [27]
  • [28]
  • [29]
  • [30]
  • [31]
  • [32]
  • [33]
  • [34]
  文献评价指标  
  下载次数:5次 浏览次数:1次