期刊论文详细信息
BMC Bioinformatics
Quantification of tumour evolution and heterogeneity via Bayesian epiallele detection
Methodology Article
Andrew Feber1  Javier Herrero1  Stephan Beck1  James E. Barrett1  Miljana Tanic1  Gareth A. Wilson2  Charles Swanton3 
[1] UCL Cancer Institute, University College London, London, UK;UCL Cancer Institute, University College London, London, UK;The Francis Crick Institute, London, UK;UCL Cancer Institute, University College London, London, UK;The Francis Crick Institute, London, UK;Cancer Research U.K. Lung Cancer Centre of Excellence, UCL Cancer Institute, London, UK;University College London Hospitals NHS Foundation Trust, London, UK;
关键词: Epigenetics;    Phylogenetics;    Heterogeneity;   
DOI  :  10.1186/s12859-017-1753-2
 received in 2017-02-28, accepted in 2017-07-05,  发布年份 2017
来源: Springer
PDF
【 摘 要 】

BackgroundEpigenetic heterogeneity within a tumour can play an important role in tumour evolution and the emergence of resistance to treatment. It is increasingly recognised that the study of DNA methylation (DNAm) patterns along the genome – so-called ‘epialleles’ – offers greater insight into epigenetic dynamics than conventional analyses which examine DNAm marks individually.ResultsWe have developed a Bayesian model to infer which epialleles are present in multiple regions of the same tumour. We apply our method to reduced representation bisulfite sequencing (RRBS) data from multiple regions of one lung cancer tumour and a matched normal sample. The model borrows information from all tumour regions to leverage greater statistical power. The total number of epialleles, the epiallele DNAm patterns, and a noise hyperparameter are all automatically inferred from the data. Uncertainty as to which epiallele an observed sequencing read originated from is explicitly incorporated by marginalising over the appropriate posterior densities. The degree to which tumour samples are contaminated with normal tissue can be estimated and corrected for. By tracing the distribution of epialleles throughout the tumour we can infer the phylogenetic history of the tumour, identify epialleles that differ between normal and cancer tissue, and define a measure of global epigenetic disorder.ConclusionsDetection and comparison of epialleles within multiple tumour regions enables phylogenetic analyses, identification of differentially expressed epialleles, and provides a measure of epigenetic heterogeneity. R code is available at github.com/james-e-barrett.

【 授权许可】

CC BY   
© The Author(s) 2017

【 预 览 】
附件列表
Files Size Format View
RO202311108694720ZK.pdf 1112KB PDF download
Fig. 2 1527KB Image download
Fig. 2 98KB Image download
MediaObjects/12974_2023_2927_MOESM8_ESM.docx 1142KB Other download
MediaObjects/12902_2023_1437_MOESM1_ESM.docx 31KB Other download
Fig. 2 1346KB Image download
MediaObjects/12902_2023_1437_MOESM2_ESM.docx 1656KB Other download
Fig. 7 1035KB Image download
Fig. 4 270KB Image download
MediaObjects/12864_2023_9737_MOESM8_ESM.txt 45KB Other download
12936_2015_894_Article_IEq86.gif 1KB Image download
12951_2015_155_Article_IEq1.gif 1KB Image download
Fig. 1 1324KB Image download
Fig. 4 659KB Image download
Fig. 4 330KB Image download
Fig. 1 616KB Image download
Fig. 8 980KB Image download
Fig. 2 1084KB Image download
Fig. 5 508KB Image download
12936_2017_2051_Article_IEq78.gif 1KB Image download
Fig. 3 739KB Image download
Fig. 2 1046KB Image download
Fig. 4 964KB Image download
Fig. 6 353KB Image download
Fig. 9 902KB Image download
Fig. 1 816KB Image download
12951_2015_155_Article_IEq2.gif 1KB Image download
Fig. 7 5305KB Image download
Fig. 1 675KB Image download
【 图 表 】

Fig. 1

Fig. 7

12951_2015_155_Article_IEq2.gif

Fig. 1

Fig. 9

Fig. 6

Fig. 4

Fig. 2

Fig. 3

12936_2017_2051_Article_IEq78.gif

Fig. 5

Fig. 2

Fig. 8

Fig. 1

Fig. 4

Fig. 4

Fig. 1

12951_2015_155_Article_IEq1.gif

12936_2015_894_Article_IEq86.gif

Fig. 4

Fig. 7

Fig. 2

Fig. 2

Fig. 2

【 参考文献 】
  • [1]
  • [2]
  • [3]
  • [4]
  • [5]
  • [6]
  • [7]
  • [8]
  • [9]
  • [10]
  • [11]
  • [12]
  • [13]
  • [14]
  • [15]
  • [16]
  • [17]
  • [18]
  • [19]
  • [20]
  文献评价指标  
  下载次数:11次 浏览次数:0次