期刊论文详细信息
BMC Gastroenterology
Mitochondrial uncouplers inhibit hepatic stellate cell activation
Research Article
Laurent Dollé1  Eduardo L Guimarães1  Jan Best1  Leo A van Grunsven1  Etienne Sokal2  Mustapha Najimi2 
[1] Department of Cell Biology, Liver Cell Biology Lab, Vrije Universiteit Brussel, Laarbeeklaan 103, 1090, Brussels, Belgium;Laboratory of Pediatric Hepatology and Cell Therapy, Université Catholique de Louvain (UCL), Brussel, Belgium;
关键词: Hepatic stellate cell;    Mitochondria;    Uncoupler;    Fibrosis;   
DOI  :  10.1186/1471-230X-12-68
 received in 2012-01-06, accepted in 2012-04-23,  发布年份 2012
来源: Springer
PDF
【 摘 要 】

BackgroundMitochondrial dysfunction participates in the progression of several pathologies. Although there is increasing evidence for a mitochondrial role in liver disease, little is known about its contribution to hepatic stellate cell (HSC) activation. In this study we investigated the role of mitochondrial activity through mild uncoupling during in vitro activation of HSCs.MethodsCultured primary human and mouse HSCs were treated with the chemical uncouplers FCCP and Valinomycin. ATP levels were measured by luciferase assay and production of reactive oxygen species was determined using the fluorescent probe DCFH-DA. Possible cytotoxicity by uncoupler treatment was evaluated by caspase 3/7 activity and cytoplasmic protease leakage. Activation of HSCs and their response to the pro-fibrogenic cytokine TGF-β was evaluated by gene expression of activation markers and signal mediators using RT-qPCR. Proliferation was measured by incorporation of EdU and protein expression of α-smooth muscle actin was analyzed by immunocytochemistry and western blot.ResultsFCCP and Valinomycin treatment mildly decreased ATP and reactive oxygen species levels. Both uncouplers increased the expression of mitochondrial genes such as Tfam and COXIV while inducing morphological features of quiescent mouse HSCs and abrogating TGF-β signal transduction. Mild uncoupling reduced HSC proliferation and expression of pro-fibrogenic markers of mouse and human HSCs.ConclusionsMild mitochondrial uncoupling inhibits culture-induced HSC activation and their response to pro-fibrogenic cytokines like TGF-β. These results therefore suggest mitochondrial uncoupling of HSCs as a strategy to reduce progression of liver fibrosis.

【 授权许可】

Unknown   
© Guimaraes et al.; licensee BioMed Central Ltd. 2012. This article is published under license to BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

【 预 览 】
附件列表
Files Size Format View
RO202311108395804ZK.pdf 1325KB PDF download
【 参考文献 】
  • [1]
  • [2]
  • [3]
  • [4]
  • [5]
  • [6]
  • [7]
  • [8]
  • [9]
  • [10]
  • [11]
  • [12]
  • [13]
  • [14]
  • [15]
  • [16]
  • [17]
  • [18]
  • [19]
  • [20]
  • [21]
  • [22]
  • [23]
  • [24]
  • [25]
  • [26]
  • [27]
  • [28]
  • [29]
  • [30]
  • [31]
  • [32]
  • [33]
  • [34]
  • [35]
  • [36]
  • [37]
  • [38]
  文献评价指标  
  下载次数:5次 浏览次数:4次