期刊论文详细信息
BMC Bioinformatics
Beware to ignore the rare: how imputing zero-values can improve the quality of 16S rRNA gene studies results
Research
Giacomo Baruzzo1  Barbara Di Camillo2  Ilaria Patuzzi3 
[1] Department of Information Engineering, University of Padova, Padua, Italy;Department of Information Engineering, University of Padova, Padua, Italy;CRIBI Biotechnology Centre, University of Padova, Padua, Italy;Department of Comparative Biomedicine and Food Science, University of Padova, Padua, Italy;Department of Information Engineering, University of Padova, Padua, Italy;Microbial Ecology Unit, Istituto Zooprofilattico Sperimentale Delle Venezie, Padua, Italy;Research & Development Division, EuBiome S.R.L., Padua, Italy;
关键词: Zero-imputation;    Sparsity;    Normalization;    Count preprocessing;    16S rDNA-Seq;    Count data;    Count simulation;    Benchmarking;   
DOI  :  10.1186/s12859-022-04587-0
 received in 2022-01-26, accepted in 2022-01-27,  发布年份 2022
来源: Springer
PDF
【 摘 要 】

Background16S rRNA-gene sequencing is a valuable approach to characterize the taxonomic content of the whole bacterial population inhabiting a metabolic and spatial niche, providing an important opportunity to study bacteria and their role in many health and environmental mechanisms. The analysis of data produced by amplicon sequencing, however, brings very specific methodological issues that need to be properly addressed to obtain reliable biological conclusions. Among these, 16S count data tend to be very sparse, with many null values reflecting species that are present but got unobserved due to the multiplexing constraints. However, current data workflows do not consider a step in which the information about unobserved species is recovered.ResultsIn this work, we evaluate for the first time the effects of introducing in the 16S data workflow a new preprocessing step, zero-imputation, to recover this lost information. Due to the lack of published zero-imputation methods specifically designed for 16S count data, we considered a set of zero-imputation strategies available for other frameworks, and benchmarked them using in silico 16S count data reflecting different experimental designs. Additionally, we assessed the effect of combining zero-imputation and normalization, i.e. the only preprocessing step in current 16S workflow. Overall, we benchmarked 35 16S preprocessing pipelines assessing their ability to handle data sparsity, identify species presence/absence, recovery sample proportional abundance distributions, and improve typical downstream analyses such as computation of alpha and beta diversity indices and differential abundance analysis.ConclusionsThe results clearly show that 16S data analysis greatly benefits from a properly-performed zero-imputation step, despite the choice of the right zero-imputation method having a pivotal role. In addition, we identify a set of best-performing pipelines that could be a valuable indication for data analysts.

【 授权许可】

CC BY   
© The Author(s) 2022

【 预 览 】
附件列表
Files Size Format View
RO202311108124619ZK.pdf 1865KB PDF download
Fig. 2 654KB Image download
Fig. 3 360KB Image download
Fig. 6 1635KB Image download
12951_2015_155_Article_IEq73.gif 1KB Image download
Fig. 7 432KB Image download
12951_2016_246_Article_IEq3.gif 1KB Image download
Fig. 6 3167KB Image download
MediaObjects/13068_2023_2399_MOESM7_ESM.xlsx 57KB Other download
MediaObjects/13068_2023_2416_MOESM4_ESM.xls 40KB Other download
Fig. 2 265KB Image download
MediaObjects/13068_2023_2416_MOESM5_ESM.xls 44KB Other download
MediaObjects/13068_2023_2416_MOESM6_ESM.xls 54KB Other download
MediaObjects/12888_2023_5218_MOESM1_ESM.docx 893KB Other download
12951_2015_155_Article_IEq77.gif 1KB Image download
Fig. 4 603KB Image download
Fig. 1: The conceptual framework for adherence to treatment guidelines in private drug outlets in Kisumu, Kenya 398KB Image download
12951_2016_246_Article_IEq6.gif 1KB Image download
Fig. 1 258KB Image download
12951_2016_246_Article_IEq7.gif 1KB Image download
Fig. 8 2685KB Image download
MediaObjects/13046_2023_2842_MOESM1_ESM.docx 6521KB Other download
Fig. 3 204KB Image download
12951_2017_255_Article_IEq48.gif 1KB Image download
Fig. 1 334KB Image download
Fig. 5 993KB Image download
42004_2023_1031_Article_IEq16.gif 1KB Image download
12951_2016_246_Article_IEq9.gif 1KB Image download
42004_2023_1031_Figa_HTML.png 4KB Image download
MediaObjects/12888_2023_5225_MOESM1_ESM.docx 1153KB Other download
MediaObjects/42004_2023_1031_MOESM1_ESM.pdf 4101KB PDF download
MediaObjects/12951_2023_2146_MOESM1_ESM.doc 46918KB Other download
Fig. 6 412KB Image download
Fig. 5 3768KB Image download
Fig. 1 182KB Image download
12936_2017_1904_Article_IEq1.gif 1KB Image download
12951_2017_255_Article_IEq49.gif 1KB Image download
MediaObjects/41408_2023_927_MOESM6_ESM.tif 3545KB Other download
12951_2017_255_Article_IEq50.gif 1KB Image download
MediaObjects/12944_2023_1941_MOESM2_ESM.xlsx 10KB Other download
12951_2016_223_Article_IEq1.gif 1KB Image download
Scheme 1 2400KB Image download
MediaObjects/13046_2023_2857_MOESM1_ESM.pdf 6527KB PDF download
Fig. 2 2232KB Image download
Fig. 1 1626KB Image download
Fig. 1 573KB Image download
【 图 表 】

Fig. 1

Fig. 1

Fig. 2

Scheme 1

12951_2016_223_Article_IEq1.gif

12951_2017_255_Article_IEq50.gif

12951_2017_255_Article_IEq49.gif

12936_2017_1904_Article_IEq1.gif

Fig. 1

Fig. 5

Fig. 6

42004_2023_1031_Figa_HTML.png

12951_2016_246_Article_IEq9.gif

42004_2023_1031_Article_IEq16.gif

Fig. 5

Fig. 1

12951_2017_255_Article_IEq48.gif

Fig. 3

Fig. 8

12951_2016_246_Article_IEq7.gif

Fig. 1

12951_2016_246_Article_IEq6.gif

Fig. 1: The conceptual framework for adherence to treatment guidelines in private drug outlets in Kisumu, Kenya

Fig. 4

12951_2015_155_Article_IEq77.gif

Fig. 2

Fig. 6

12951_2016_246_Article_IEq3.gif

Fig. 7

12951_2015_155_Article_IEq73.gif

Fig. 6

Fig. 3

Fig. 2

【 参考文献 】
  • [1]
  • [2]
  • [3]
  • [4]
  • [5]
  • [6]
  • [7]
  • [8]
  • [9]
  • [10]
  • [11]
  • [12]
  • [13]
  • [14]
  • [15]
  • [16]
  • [17]
  • [18]
  • [19]
  • [20]
  • [21]
  • [22]
  • [23]
  • [24]
  • [25]
  • [26]
  • [27]
  • [28]
  • [29]
  • [30]
  • [31]
  • [32]
  • [33]
  • [34]
  • [35]
  • [36]
  • [37]
  • [38]
  • [39]
  • [40]
  • [41]
  • [42]
  • [43]
  • [44]
  • [45]
  • [46]
  • [47]
  • [48]
  • [49]
  • [50]
  • [51]
  • [52]
  • [53]
  • [54]
  • [55]
  • [56]
  • [57]
  • [58]
  • [59]
  • [60]
  • [61]
  • [62]
  • [63]
  • [64]
  • [65]
  • [66]
  • [67]
  • [68]
  文献评价指标  
  下载次数:13次 浏览次数:0次