期刊论文详细信息
BMC Genomics
Identification of surface proteins in Enterococcus faecalis V583
Research Article
Øyvind L Busk1  Vincent GH Eijsink1  Geir Mathiesen1  Liv Anette Bøhle1  Tahira Riaz1  Morten Skaugen1  Wolfgang Egge-Jacobsen2 
[1] Department of Chemistry, Biotechnology, and Food Science, The Norwegian University of Life Sciences, 1432, Ås, Norway;Department of Molecular Biosciences, Glyconor Mass Spectrometry, University of Oslo, 0316, Oslo, Norway;
关键词: Collision Induce Dissociation;    Lipoic Acid;    Trypsin Treatment;    Fumarate Reductase;    Cell Wall Binding Domain;   
DOI  :  10.1186/1471-2164-12-135
 received in 2010-12-02, accepted in 2011-03-01,  发布年份 2011
来源: Springer
PDF
【 摘 要 】

BackgroundSurface proteins are a key to a deeper understanding of the behaviour of Gram-positive bacteria interacting with the human gastro-intestinal tract. Such proteins contribute to cell wall synthesis and maintenance and are important for interactions between the bacterial cell and the human host. Since they are exposed and may play roles in pathogenicity, surface proteins are interesting targets for drug design.ResultsUsing methods based on proteolytic "shaving" of bacterial cells and subsequent mass spectrometry-based protein identification, we have identified surface-located proteins in Enterococcus faecalis V583. In total 69 unique proteins were identified, few of which have been identified and characterized previously. 33 of these proteins are predicted to be cytoplasmic, whereas the other 36 are predicted to have surface locations (31) or to be secreted (5). Lipid-anchored proteins were the most dominant among the identified surface proteins. The seemingly most abundant surface proteins included a membrane protein with a potentially shedded extracellular sulfatase domain that could act on the sulfate groups in mucin and a lipid-anchored fumarate reductase that could contribute to generation of reactive oxygen species.ConclusionsThe present proteome analysis gives an experimental impression of the protein landscape on the cell surface of the pathogenic bacterium E. faecalis. The 36 identified secreted (5) and surface (31) proteins included several proteins involved in cell wall synthesis, pheromone-regulated processes, and transport of solutes, as well as proteins with unknown function. These proteins stand out as interesting targets for further investigation of the interaction between E. faecalis and its environment.

【 授权许可】

Unknown   
© Bøhle et al; licensee BioMed Central Ltd. 2011. This article is published under license to BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

【 预 览 】
附件列表
Files Size Format View
RO202311108100590ZK.pdf 597KB PDF download
【 参考文献 】
  • [1]
  • [2]
  • [3]
  • [4]
  • [5]
  • [6]
  • [7]
  • [8]
  • [9]
  • [10]
  • [11]
  • [12]
  • [13]
  • [14]
  • [15]
  • [16]
  • [17]
  • [18]
  • [19]
  • [20]
  • [21]
  • [22]
  • [23]
  • [24]
  • [25]
  • [26]
  • [27]
  • [28]
  • [29]
  • [30]
  • [31]
  • [32]
  • [33]
  • [34]
  • [35]
  • [36]
  • [37]
  • [38]
  • [39]
  • [40]
  • [41]
  • [42]
  • [43]
  • [44]
  • [45]
  • [46]
  • [47]
  • [48]
  • [49]
  • [50]
  • [51]
  • [52]
  • [53]
  • [54]
  • [55]
  • [56]
  • [57]
  • [58]
  • [59]
  • [60]
  • [61]
  • [62]
  • [63]
  • [64]
  • [65]
  • [66]
  • [67]
  • [68]
  文献评价指标  
  下载次数:7次 浏览次数:0次