期刊论文详细信息
BMC Bioinformatics
chngpt: threshold regression model estimation and inference
Software
Ying Huang1  Peter B. Gilbert1  Youyi Fong1  Sallie R. Permar2 
[1] Department of Biostatistics, Bioinformatics and Epidemiology, Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, USA, 1100 Fairview Ave N., Seattle, USA;Human Vaccine Institute, Duke University Medical Center, 2 Genome Court, Durham, USA;
关键词: Segmented regression model;    Regression kink;    Jump-type;    Change point;   
DOI  :  10.1186/s12859-017-1863-x
 received in 2017-01-10, accepted in 2017-10-09,  发布年份 2017
来源: Springer
PDF
【 摘 要 】

BackgroundThreshold regression models are a diverse set of non-regular regression models that all depend on change points or thresholds. They provide a simple but elegant and interpretable way to model certain kinds of nonlinear relationships between the outcome and a predictor.ResultsThe R package chngpt provides both estimation and hypothesis testing functionalities for four common variants of threshold regression models. All allow for adjustment of additional covariates not subjected to thresholding. We demonstrate the consistency of the estimating procedures and the type 1 error rates of the testing procedures by Monte Carlo studies, and illustrate their practical uses using an example from the study of immune response biomarkers in the context of Mother-To-Child-Transmission of HIV-1 viruses.Conclusionchngpt makes several unique contributions to the software for threshold regression models and will make these models more accessible to practitioners interested in modeling threshold effects.

【 授权许可】

CC BY   
© The Author(s) 2017

【 预 览 】
附件列表
Files Size Format View
RO202311107950360ZK.pdf 559KB PDF download
MediaObjects/12888_2023_5250_MOESM3_ESM.docx 27KB Other download
Fig. 4 201KB Image download
MediaObjects/12888_2023_5250_MOESM4_ESM.docx 21KB Other download
Fig. 6 2050KB Image download
Fig. 4 463KB Image download
Fig. 3 2960KB Image download
MediaObjects/12951_2023_2103_MOESM1_ESM.docx 8153KB Other download
Fig. 2 199KB Image download
Fig. 4 987KB Image download
MediaObjects/42004_2023_1026_MOESM2_ESM.pdf 29978KB PDF download
Fig. 5 578KB Image download
12936_2023_4742_Article_IEq36.gif 1KB Image download
12951_2016_171_Article_IEq1.gif 1KB Image download
Fig. 1 676KB Image download
Fig. 2 550KB Image download
Fig. 1 1367KB Image download
Fig. 6 571KB Image download
【 图 表 】

Fig. 6

Fig. 1

Fig. 2

Fig. 1

12951_2016_171_Article_IEq1.gif

12936_2023_4742_Article_IEq36.gif

Fig. 5

Fig. 4

Fig. 2

Fig. 3

Fig. 4

Fig. 6

Fig. 4

【 参考文献 】
  • [1]
  • [2]
  • [3]
  • [4]
  • [5]
  • [6]
  • [7]
  • [8]
  • [9]
  • [10]
  • [11]
  • [12]
  • [13]
  • [14]
  • [15]
  • [16]
  • [17]
  文献评价指标  
  下载次数:3次 浏览次数:0次