期刊论文详细信息
Cancer Nanotechnology
Gold nanoparticles for cancer radiotherapy: a review
Review
Małgorzata A. Śmiałek1  Sophie Grellet2  Jon Golding2  Nigel J. Mason3  Kaspar Haume3  Andrey V. Solov’yov4  Kevin M. Prise5  Soraia Rosa5  Karl T. Butterworth5 
[1] Department of Control and Power Engineering, Faculty of Ocean Engineering and Ship Technology, Gdansk University of Technology, 80-233, Gdansk, Poland;Department of Life, Health and Chemical Sciences, The Open University, Walton Hall, MK7 6AA, Milton Keynes, UK;Department of Physical Sciences, The Open University, Walton Hall, MK7 6AA, Milton Keynes, UK;MBN Research Center, Altenhöferallee 3, 60438, Frankfurt, Germany;School of Medicine, Dentistry and Biomedical Sciences, Queen’s University Belfast, Lisburn Road, BT9 7BL, Belfast, UK;
关键词: Gold nanoparticles;    Nanomedicine;    Radiosensitisation;   
DOI  :  10.1186/s12645-016-0021-x
 received in 2016-06-06, accepted in 2016-10-14,  发布年份 2016
来源: Springer
PDF
【 摘 要 】

Radiotherapy is currently used in around 50% of cancer treatments and relies on the deposition of energy directly into tumour tissue. Although it is generally effective, some of the deposited energy can adversely affect healthy tissue outside the tumour volume, especially in the case of photon radiation (gamma and X-rays). Improved radiotherapy outcomes can be achieved by employing ion beams due to the characteristic energy deposition curve which culminates in a localised, high radiation dose (in form of a Bragg peak). In addition to ion radiotherapy, novel sensitisers, such as nanoparticles, have shown to locally increase the damaging effect of both photon and ion radiation, when both are applied to the tumour area. Amongst the available nanoparticle systems, gold nanoparticles have become particularly popular due to several advantages: biocompatibility, well-established methods for synthesis in a wide range of sizes, and the possibility of coating of their surface with a large number of different molecules to provide partial control of, for example, surface charge or interaction with serum proteins. This gives a full range of options for design parameter combinations, in which the optimal choice is not always clear, partially due to a lack of understanding of many processes that take place upon irradiation of such complicated systems. In this review, we summarise the mechanisms of action of radiation therapy with photons and ions in the presence and absence of nanoparticles, as well as the influence of some of the core and coating design parameters of nanoparticles on their radiosensitisation capabilities.

【 授权许可】

CC BY   
© The Author(s) 2016

【 预 览 】
附件列表
Files Size Format View
RO202311107942213ZK.pdf 1414KB PDF download
Fig. 6 993KB Image download
Fig. 3 257KB Image download
MediaObjects/13049_2023_1131_MOESM3_ESM.mp4 884KB Other download
12951_2017_255_Article_IEq45.gif 1KB Image download
Fig. 19 120KB Image download
Fig. 1 4104KB Image download
MediaObjects/41408_2023_927_MOESM4_ESM.tif 7017KB Other download
Fig. 5 4247KB Image download
Fig. 7 3820KB Image download
Fig. 2 2313KB Image download
Fig. 10 58KB Image download
12951_2015_155_Article_IEq70.gif 1KB Image download
Fig. 3 603KB Image download
Fig. 1 410KB Image download
【 图 表 】

Fig. 1

Fig. 3

12951_2015_155_Article_IEq70.gif

Fig. 10

Fig. 2

Fig. 7

Fig. 5

Fig. 1

Fig. 19

12951_2017_255_Article_IEq45.gif

Fig. 3

Fig. 6

【 参考文献 】
  • [1]
  • [2]
  • [3]
  • [4]
  • [5]
  • [6]
  • [7]
  • [8]
  • [9]
  • [10]
  • [11]
  • [12]
  • [13]
  • [14]
  • [15]
  • [16]
  • [17]
  • [18]
  • [19]
  • [20]
  • [21]
  • [22]
  • [23]
  • [24]
  • [25]
  • [26]
  • [27]
  • [28]
  • [29]
  • [30]
  • [31]
  • [32]
  • [33]
  • [34]
  • [35]
  • [36]
  • [37]
  • [38]
  • [39]
  • [40]
  • [41]
  • [42]
  • [43]
  • [44]
  • [45]
  • [46]
  • [47]
  • [48]
  • [49]
  • [50]
  • [51]
  • [52]
  • [53]
  • [54]
  • [55]
  • [56]
  • [57]
  • [58]
  • [59]
  • [60]
  • [61]
  • [62]
  • [63]
  • [64]
  • [65]
  • [66]
  • [67]
  • [68]
  • [69]
  • [70]
  • [71]
  • [72]
  • [73]
  • [74]
  • [75]
  • [76]
  • [77]
  • [78]
  • [79]
  • [80]
  • [81]
  • [82]
  • [83]
  • [84]
  • [85]
  • [86]
  • [87]
  • [88]
  • [89]
  • [90]
  • [91]
  • [92]
  • [93]
  • [94]
  • [95]
  • [96]
  • [97]
  • [98]
  • [99]
  • [100]
  • [101]
  • [102]
  • [103]
  • [104]
  • [105]
  • [106]
  • [107]
  • [108]
  • [109]
  • [110]
  • [111]
  • [112]
  • [113]
  • [114]
  • [115]
  • [116]
  • [117]
  • [118]
  • [119]
  • [120]
  • [121]
  • [122]
  • [123]
  • [124]
  • [125]
  • [126]
  • [127]
  • [128]
  • [129]
  • [130]
  • [131]
  • [132]
  • [133]
  • [134]
  • [135]
  • [136]
  • [137]
  文献评价指标  
  下载次数:4次 浏览次数:0次