BMC Plant Biology | |
Resistance to Plasmopara viticolain a grapevine segregating population is associated with stilbenoid accumulation and with specific host transcriptional responses | |
Research Article | |
Massimo Delledonne1  Claudio Moser2  Urska Vrhovsek2  Fulvio Mattivi2  Luca Zulini2  Marco Stefanini2  Alessandro Cestaro2  Giulia Malacarne2  Riccardo Velasco2  | |
[1] Department of Biotechnology, University of Verona, Strada le Grazie 15, 37134, Verona, Italy;Fondazione Edmund Mach, Research and Innovation Center, Via E.Mach 1, 38010, San Michele all'Adige, Italy; | |
关键词: Resveratrol; Stilbene; Downy Mildew; Resistant Genotype; Susceptible Genotype; | |
DOI : 10.1186/1471-2229-11-114 | |
received in 2011-03-08, accepted in 2011-08-12, 发布年份 2011 | |
来源: Springer | |
【 摘 要 】
BackgroundDowny mildew, caused by the oomycete Plasmopara viticola, is a serious disease in Vitisvinifera, the most commonly cultivated grapevine species. Several wild Vitis species have instead been found to be resistant to this pathogen and have been used as a source to introgress resistance into a V. vinifera background. Stilbenoids represent the major phytoalexins in grapevine, and their toxicity is closely related to the specific compound. The aim of this study was to assess the resistance response to P. viticola of the Merzling × Teroldego cross by profiling the stilbenoid content of the leaves of an entire population and the transcriptome of resistant and susceptible individuals following infection.ResultsA three-year analysis of the population's response to artificial inoculation showed that individuals were distributed in nine classes ranging from total resistance to total susceptibility. In addition, quantitative metabolite profiling of stilbenoids in the population, carried out using HPLC-DAD-MS, identified three distinct groups differing according to the concentrations present and the complexity of their profiles. The high producers were characterized by the presence of trans-resveratrol, trans-piceid, trans-pterostilbene and up to thirteen different viniferins, nine of them new in grapevine.Accumulation of these compounds is consistent with a resistant phenotype and suggests that they may contribute to the resistance response.A preliminary transcriptional study using cDNA-AFLP selected a set of genes modulated by the oomycete in a resistant genotype. The expression of this set of genes in resistant and susceptible genotypes of the progeny population was then assessed by comparative microarray analysis.A group of 57 genes was found to be exclusively modulated in the resistant genotype suggesting that they are involved in the grapevine-P. viticola incompatible interaction. Functional annotation of these transcripts revealed that they belong to the categories defense response, photosynthesis, primary and secondary metabolism, signal transduction and transport.ConclusionsThis study reports the results of a combined metabolic and transcriptional profiling of a grapevine population segregating for resistance to P. viticola. Some resistant individuals were identified and further characterized at the molecular level. These results will be valuable to future grapevine breeding programs.
【 授权许可】
CC BY
© Malacarne et al; licensee BioMed Central Ltd. 2011
【 预 览 】
Files | Size | Format | View |
---|---|---|---|
RO202311107937974ZK.pdf | 952KB | download |
【 参考文献 】
- [1]
- [2]
- [3]
- [4]
- [5]
- [6]
- [7]
- [8]
- [9]
- [10]
- [11]
- [12]
- [13]
- [14]
- [15]
- [16]
- [17]
- [18]
- [19]
- [20]
- [21]
- [22]
- [23]
- [24]
- [25]
- [26]
- [27]
- [28]
- [29]
- [30]
- [31]
- [32]
- [33]
- [34]
- [35]
- [36]
- [37]
- [38]
- [39]
- [40]
- [41]
- [42]
- [43]
- [44]
- [45]
- [46]
- [47]
- [48]
- [49]
- [50]
- [51]
- [52]
- [53]
- [54]
- [55]
- [56]
- [57]
- [58]
- [59]
- [60]
- [61]
- [62]
- [63]
- [64]
- [65]
- [66]
- [67]
- [68]
- [69]
- [70]
- [71]
- [72]
- [73]
- [74]
- [75]
- [76]
- [77]
- [78]
- [79]
- [80]
- [81]
- [82]
- [83]