| Journal of Cardiovascular Magnetic Resonance | |
| In vivo characterization of rodent cyclic myocardial perfusion variation at rest and during adenosine-induced stress using cine-ASL cardiovascular magnetic resonance | |
| Research | |
| Monique Bernard1  Thomas Troalen1  Frank Kober1  Thibaut Capron1  | |
| [1] Aix-Marseille Université, CNRS, CRMBM UMR 7339, 27 Bd Jean Moulin, 13385, Marseille Cedex 5, France; | |
| 关键词: Myocardial blood flow; Microcirculation; Adenosine; Perfusion; Rat heart; | |
| DOI : 10.1186/1532-429X-16-18 | |
| received in 2013-09-06, accepted in 2014-02-10, 发布年份 2014 | |
| 来源: Springer | |
PDF
|
|
【 摘 要 】
BackgroundAssessment of cyclic myocardial blood flow (MBF) variations can be an interesting addition to the characterization of microvascular function and its alterations. To date, totally non-invasive in vivo methods with this capability are still lacking. As an original technique, a cine arterial spin labeling (ASL) cardiovascular magnetic resonance approach is demonstrated to be able to produce dynamic MBF maps across the cardiac cycle in rats.MethodHigh-resolution MBF maps in left ventricular myocardium were computed from steady-state perfusion-dependent gradient-echo cine images produced by the cine-ASL sequence. Cyclic changes of MBF over the entire cardiac cycle in seven normal rats were analyzed quantitatively every 6ms at rest and during adenosine-induced stress.ResultsThe study showed a significant MBF increase from end-systole (ES) to end-diastole (ED) in both physiological states. Mean MBF over the cardiac cycle within the group was 5.5 ± 0.6 mL g-1 min-1 at rest (MBFMin = 4.7 ± 0.8 at ES and MBFMax = 6.5 ± 0.6 mL g-1 min-1 at ED, P = 0.0007). Mean MBF during adenosine-induced stress was 12.8 ± 0.7mL g-1 min-1 (MBFMin = 11.7±1.0 at ES and MBFMax = 14.2 ± 0.7 mL g-1 min-1 at ED, P = 0.0007). MBF percentage relative variations were significantly different with 27.2 ± 9.3% at rest and 17.8 ± 7.1% during adenosine stress (P = 0.014). The dynamic analysis also showed a time shift of peak MBF within the cardiac cycle during stress.ConclusionThe cyclic change of myocardial perfusion was examined by mapping MBF with a steady-pulsed ASL approach. Dynamic MBF maps were obtained with high spatial and temporal resolution (6ms) demonstrating the feasibility of non-invasively mapping cyclic myocardial perfusion variation at rest and during adenosine stress. In a pathological context, detailed assessment of coronary responses to infused vasodilators may give valuable complementary information on microvascular functional defects in disease models.
【 授权许可】
Unknown
© Troalen et al.; licensee BioMed Central Ltd. 2014. This article is published under license to BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly credited. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.
【 预 览 】
| Files | Size | Format | View |
|---|---|---|---|
| RO202311107833055ZK.pdf | 1290KB |
【 参考文献 】
- [1]
- [2]
- [3]
- [4]
- [5]
- [6]
- [7]
- [8]
- [9]
- [10]
- [11]
- [12]
- [13]
- [14]
- [15]
- [16]
- [17]
- [18]
- [19]
- [20]
- [21]
- [22]
- [23]
- [24]
- [25]
- [26]
- [27]
- [28]
- [29]
- [30]
- [31]
- [32]
- [33]
- [34]
- [35]
- [36]
- [37]
- [38]
- [39]
- [40]
- [41]
- [42]
- [43]
- [44]
- [45]
- [46]
- [47]
PDF