期刊论文详细信息
BMC Infectious Diseases
A framework for evaluating epidemic forecasts
Technical Advance
Prithwish Chakraborty1  Farzaneh Sadat Tabataba2  Madhav Marathe2  Naren Ramakrishnan2  Srinivasan Venkatramanan3  Jiangzhuo Chen3  Bryan Lewis3 
[1] Computer Science Department, Virginia Tech, 2202 Kraft Drive, 24060, Blacksburg/Virginia, USA;Computer Science Department, Virginia Tech, 2202 Kraft Drive, 24060, Blacksburg/Virginia, USA;Network Dynamics and Simulation Science Laboratory (NDSSL), Biocomplexity Institute, Virginia Tech, 1015 Life Science Cir, 24061, Blacksburg/Virginia, USA;Network Dynamics and Simulation Science Laboratory (NDSSL), Biocomplexity Institute, Virginia Tech, 1015 Life Science Cir, 24061, Blacksburg/Virginia, USA;
关键词: Epidemic forecasting;    Error Measure;    Performance evaluation;    Epidemic-Features;    Ranking;   
DOI  :  10.1186/s12879-017-2365-1
 received in 2016-07-28, accepted in 2017-03-29,  发布年份 2017
来源: Springer
PDF
【 摘 要 】

BackgroundOver the past few decades, numerous forecasting methods have been proposed in the field of epidemic forecasting. Such methods can be classified into different categories such as deterministic vs. probabilistic, comparative methods vs. generative methods, and so on. In some of the more popular comparative methods, researchers compare observed epidemiological data from the early stages of an outbreak with the output of proposed models to forecast the future trend and prevalence of the pandemic. A significant problem in this area is the lack of standard well-defined evaluation measures to select the best algorithm among different ones, as well as for selecting the best possible configuration for a particular algorithm.ResultsIn this paper we present an evaluation framework which allows for combining different features, error measures, and ranking schema to evaluate forecasts. We describe the various epidemic features (Epi-features) included to characterize the output of forecasting methods and provide suitable error measures that could be used to evaluate the accuracy of the methods with respect to these Epi-features. We focus on long-term predictions rather than short-term forecasting and demonstrate the utility of the framework by evaluating six forecasting methods for predicting influenza in the United States. Our results demonstrate that different error measures lead to different rankings even for a single Epi-feature. Further, our experimental analyses show that no single method dominates the rest in predicting all Epi-features when evaluated across error measures. As an alternative, we provide various Consensus Ranking schema that summarize individual rankings, thus accounting for different error measures. Since each Epi-feature presents a different aspect of the epidemic, multiple methods need to be combined to provide a comprehensive forecast. Thus we call for a more nuanced approach while evaluating epidemic forecasts and we believe that a comprehensive evaluation framework, as presented in this paper, will add value to the computational epidemiology community.

【 授权许可】

CC BY   
© The Author(s) 2017

【 预 览 】
附件列表
Files Size Format View
RO202311107819728ZK.pdf 5302KB PDF download
12951_2016_171_Article_IEq3.gif 1KB Image download
Fig. 4 467KB Image download
12951_2015_155_Article_IEq88.gif 1KB Image download
12951_2016_171_Article_IEq5.gif 1KB Image download
Fig. 2 939KB Image download
Fig. 2 164KB Image download
Fig. 11 7606KB Image download
Fig. 6 889KB Image download
Fig. 3 198KB Image download
12951_2016_225_Article_IEq2.gif 1KB Image download
MediaObjects/40249_2023_1144_MOESM1_ESM.docx 1220KB Other download
Fig. 1 713KB Image download
Fig. 1 34KB Image download
12951_2015_155_Article_IEq91.gif 1KB Image download
Fig. 4 1202KB Image download
Fig. 1 632KB Image download
MediaObjects/40644_2023_618_MOESM2_ESM.docx 13KB Other download
MediaObjects/13100_2023_304_MOESM1_ESM.pdf 1473KB PDF download
12951_2016_171_Article_IEq6.gif 1KB Image download
Fig. 5 24KB Image download
MediaObjects/40644_2023_618_MOESM5_ESM.docx 13KB Other download
Fig. 1 137KB Image download
Fig. 2 673KB Image download
Fig. 1 407KB Image download
Fig. 2 159KB Image download
Fig. 2 3290KB Image download
Fig. 3 356KB Image download
MediaObjects/12888_2023_5198_MOESM1_ESM.docx 17KB Other download
Fig. 3 748KB Image download
12864_2017_4133_Article_IEq35.gif 1KB Image download
Fig. 2 476KB Image download
Fig. 1 153KB Image download
Fig. 1 302KB Image download
Fig. 1 849KB Image download
Fig. 2 503KB Image download
Fig. 3 453KB Image download
MediaObjects/13046_2023_2865_MOESM2_ESM.docx 22KB Other download
Fig. 5 2311KB Image download
729KB Image download
12936_2016_1315_Article_IEq8.gif 1KB Image download
Fig. 2 279KB Image download
Fig. 4 756KB Image download
Fig. 5 40KB Image download
MediaObjects/12944_2023_1921_MOESM1_ESM.pdf 34KB PDF download
Fig. 1 806KB Image download
Fig. 3 447KB Image download
【 图 表 】

Fig. 3

Fig. 1

Fig. 5

Fig. 4

Fig. 2

12936_2016_1315_Article_IEq8.gif

Fig. 5

Fig. 3

Fig. 2

Fig. 1

Fig. 1

Fig. 1

Fig. 2

12864_2017_4133_Article_IEq35.gif

Fig. 3

Fig. 3

Fig. 2

Fig. 2

Fig. 1

Fig. 2

Fig. 1

Fig. 5

12951_2016_171_Article_IEq6.gif

Fig. 1

Fig. 4

12951_2015_155_Article_IEq91.gif

Fig. 1

Fig. 1

12951_2016_225_Article_IEq2.gif

Fig. 3

Fig. 6

Fig. 11

Fig. 2

Fig. 2

12951_2016_171_Article_IEq5.gif

12951_2015_155_Article_IEq88.gif

Fig. 4

12951_2016_171_Article_IEq3.gif

【 参考文献 】
  • [1]
  • [2]
  • [3]
  • [4]
  • [5]
  • [6]
  • [7]
  • [8]
  • [9]
  • [10]
  • [11]
  • [12]
  • [13]
  • [14]
  • [15]
  • [16]
  • [17]
  • [18]
  • [19]
  • [20]
  • [21]
  • [22]
  • [23]
  • [24]
  • [25]
  • [26]
  • [27]
  • [28]
  • [29]
  • [30]
  • [31]
  • [32]
  • [33]
  • [34]
  • [35]
  • [36]
  • [37]
  • [38]
  • [39]
  • [40]
  • [41]
  • [42]
  • [43]
  • [44]
  文献评价指标  
  下载次数:3次 浏览次数:0次