| BMC Genetics | |
| Principal-component-based multivariate regression for genetic association studies of metabolic syndrome components | |
| Methodology Article | |
| Canddy Yau1  Andrew Dellinger2  Hao Mei3  Jiang He3  Meng Wang4  Sathanur R Srinivasan5  Gerald S Berenson5  Wei Chen5  | |
| [1] Biostatistics Department, School of Public Health and Tropical Medicine, Tulane University, New Orleans, USA;Center for Human Genetics, Duke University, Durham, NC, USA;Epidemiology Department, School of Public Health and Tropical Medicine, Tulane University, New Orleans, USA;School of Life Science, Nanjing University, Nanjing, PR China;Tulane Center for Cardiovascular Health, Tulane University Health Sciences Center, New Orleans, USA; | |
| 关键词: Quantitative Trait Locus; Pleiotropic Effect; Canonical Variable; Recessive Model; Multiple Trait; | |
| DOI : 10.1186/1471-2156-11-100 | |
| received in 2009-12-07, accepted in 2010-11-09, 发布年份 2010 | |
| 来源: Springer | |
PDF
|
|
【 摘 要 】
BackgroundQuantitative traits often underlie risk for complex diseases. For example, weight and body mass index (BMI) underlie the human abdominal obesity-metabolic syndrome. Many attempts have been made to identify quantitative trait loci (QTL) over the past decade, including association studies. However, a single QTL is often capable of affecting multiple traits, a quality known as gene pleiotropy. Gene pleiotropy may therefore cause a loss of power in association studies focused only on a single trait, whether based on single or multiple markers.ResultsWe propose using principal-component-based multivariate regression (PCBMR) to test for gene pleiotropy with comprehensive evaluation. This method generates one or more independent canonical variables based on the principal components of original traits and conducts a multivariate regression to test for association with these new variables. Systematic simulation studies have shown that PCBMR has great power. PCBMR-based pleiotropic association studies of abdominal obesity-metabolic syndrome and its possible linkage to chromosomal band 3q27 identified 11 susceptibility genes with significant associations. Whereas some of these genes had been previously reported to be associated with metabolic traits, others had never been identified as metabolism-associated genes.ConclusionsPCBMR is a computationally efficient and powerful test for gene pleiotropy. Application of PCBMR to abdominal obesity-metabolic syndrome indicated the existence of gene pleiotropy affecting this syndrome.
【 授权许可】
Unknown
© Mei et al; licensee BioMed Central Ltd. 2010. This article is published under license to BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
【 预 览 】
| Files | Size | Format | View |
|---|---|---|---|
| RO202311107518118ZK.pdf | 736KB |
【 参考文献 】
- [1]
- [2]
- [3]
- [4]
- [5]
- [6]
- [7]
- [8]
- [9]
- [10]
- [11]
- [12]
- [13]
- [14]
- [15]
- [16]
- [17]
- [18]
- [19]
- [20]
- [21]
- [22]
- [23]
- [24]
- [25]
- [26]
- [27]
- [28]
- [29]
- [30]
- [31]
- [32]
- [33]
- [34]
- [35]
- [36]
- [37]
- [38]
- [39]
PDF