期刊论文详细信息
Molecular Cancer
The Bcl-2/xL inhibitor ABT-263 increases the stability of Mcl-1 mRNA and protein in hepatocellular carcinoma cells
Research
Fengtian He1  Bin Wang1  Jiqin Lian1  Liyan Qin1  Xinzhe Li1  Zhenhong Ni1  Xufang Dai2  Liang Xu3 
[1] Department of Biochemistry and Molecular Biology, College of Basic Medical Sciences, Third Military Medical University, 30 Gaotanyan, 400038, Chongqing, China;Department of Educational Science College, Chongqing Normal University, 400038, Chongqing, China;Departments of Molecular Biosciences and Radiation Oncology, University of Kansas Cancer Center, University of Kansas, 66045-7534, Lawrence, USA;
关键词: ABT-263;    Mcl-1;    Stability;    HCC;   
DOI  :  10.1186/1476-4598-13-98
 received in 2013-10-25, accepted in 2014-04-24,  发布年份 2014
来源: Springer
PDF
【 摘 要 】

BackgroundHepatocellular carcinoma (HCC) is one of the major causes of mortality. ABT-263 is a newly synthesized, orally available Bcl-2/xL inhibitor that shows promising efficacy in HCC therapy. ABT-263 inhibits the anti-apoptotic activity of Bcl-2 and Bcl-xL, but not Mcl-1. Previous reports have shown that ABT-263 upregulates Mcl-1 in various cancer cells, which contributes to ABT-263 resistance in cancer therapy. However, the associated mechanisms are not well known.MethodsWestern blot, RNAi and CCK-8 assays were used to investigate the relationship between Mcl-1 upregulation and ABT-263 sensitivity in HCC cells. Real-time PCR and Western blot were used to detect Mcl-1 mRNA and protein levels. Luciferase reporter assay and RNA synthesis inhibition assay were adopted to analyze the mechanism of Mcl-1 mRNA upregulation. Western blot and the inhibition assays for protein synthesis and proteasome were used to explore the mechanisms of ABT-263-enhanced Mcl-1 protein stability. Trypan blue exclusion assay and flow cytometry were used to examine cell death and apoptosis.ResultsABT-263 upregulated Mcl-1 mRNA and protein levels in HCC cells, which contributes to ABT-263 resistance. ABT-263 increased the mRNA level of Mcl-1 in HCC cells by enhancing the mRNA stability without influencing its transcription. Furthermore, ABT-263 increased the protein stability of Mcl-1 through promoting ERK- and JNK-induced phosphorylation of Mcl-1Thr163 and increasing the Akt-mediated inactivation of GSK-3β. Additionally, the inhibitors of ERK, JNK or Akt sensitized ABT-263-induced apoptosis in HCC cells.ConclusionsABT-263 increases Mcl-1 stability at both mRNA and protein levels in HCC cells. Inhibition of ERK, JNK or Akt activity sensitizes ABT-263-induced apoptosis. This study may provide novel insights into the Bcl-2-targeted cancer therapeutics.

【 授权许可】

Unknown   
© Wang et al.; licensee BioMed Central Ltd. 2014. This article is published under license to BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly credited. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.

【 预 览 】
附件列表
Files Size Format View
RO202311107213233ZK.pdf 1973KB PDF download
【 参考文献 】
  • [1]
  • [2]
  • [3]
  • [4]
  • [5]
  • [6]
  • [7]
  • [8]
  • [9]
  • [10]
  • [11]
  • [12]
  • [13]
  • [14]
  • [15]
  • [16]
  • [17]
  • [18]
  • [19]
  • [20]
  • [21]
  • [22]
  • [23]
  • [24]
  • [25]
  • [26]
  • [27]
  • [28]
  • [29]
  • [30]
  • [31]
  • [32]
  • [33]
  • [34]
  • [35]
  • [36]
  • [37]
  • [38]
  • [39]
  • [40]
  • [41]
  • [42]
  文献评价指标  
  下载次数:0次 浏览次数:0次