BMC Genomics | |
Genome-wide analysis of the Populus Hsp90 gene family reveals differential expression patterns, localization, and heat stress responses | |
Research Article | |
Jun Chen1  Bobin Liu1  Jin Zhang1  Jianbo Li1  Mengzhu Lu1  Li Zhang1  | |
[1] State Key Laboratory of Tree Genetics and Breeding, Research Institute of Forestry, Chinese Academy of Forestry, 100091, Beijing, China; | |
关键词: Expression analysis; Gene family; Gene structure; Hsp90; Phylogenetic analysis; Populus; | |
DOI : 10.1186/1471-2164-14-532 | |
received in 2013-01-25, accepted in 2013-07-30, 发布年份 2013 | |
来源: Springer | |
【 摘 要 】
BackgroundMembers of the heat shock protein 90 (Hsp90) class of proteins are evolutionarily conserved molecular chaperones. They are involved in protein folding, assembly, stabilization, activation, and degradation in many normal cellular processes and under stress conditions. Unlike many other well-characterized molecular chaperones, Hsp90s play key roles in signal transduction, cell-cycle control, genomic silencing, and protein trafficking. However, no systematic analysis of genome organization, gene structure, and expression compendium has been performed in the Populus model tree genus to date.ResultsWe performed a comprehensive analysis of the Populus Hsp90 gene family and identified 10 Populus Hsp90 genes, which were phylogenetically clustered into two major groups. Gene structure and motif composition are relatively conserved in each group. In Populus trichocarpa, we identified three paralogous pairs, among which the PtHsp90-5a/PtHsp90-5b paralogous pair might be created by duplication of a genome segment. Subcellular localization analysis shows that PtHsp90 members are localized in different subcellular compartments. PtHsp90-3 is localized both in the nucleus and in the cytoplasm, PtHsp90-5a and PtHsp90-5b are in chloroplasts, and PtHsp90-7 is in the endoplasmic reticulum (ER). Furthermore, microarray and semi-quantitative real-time RT-PCR analyses show that a number of Populus Hsp90 genes are differentially expressed upon exposure to various stresses.ConclusionsThe gene structure and motif composition of PtHsp90s are highly conserved among group members, suggesting that members of the same group may also have conserved functions. Microarray and RT-PCR analyses show that most PtHsp90s were induced by various stresses, including heat stress. Collectively, these observations lay the foundation for future efforts to unravel the biological roles of PtHsp90 genes.
【 授权许可】
Unknown
© Zhang et al.; licensee BioMed Central Ltd. 2013. This article is published under license to BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
【 预 览 】
Files | Size | Format | View |
---|---|---|---|
RO202311107178144ZK.pdf | 2588KB | download |
【 参考文献 】
- [1]
- [2]
- [3]
- [4]
- [5]
- [6]
- [7]
- [8]
- [9]
- [10]
- [11]
- [12]
- [13]
- [14]
- [15]
- [16]
- [17]
- [18]
- [19]
- [20]
- [21]
- [22]
- [23]
- [24]
- [25]
- [26]
- [27]
- [28]
- [29]
- [30]
- [31]
- [32]
- [33]
- [34]
- [35]
- [36]
- [37]
- [38]
- [39]
- [40]
- [41]
- [42]
- [43]
- [44]
- [45]
- [46]
- [47]
- [48]