期刊论文详细信息
Proteome Science
Secretome analysis of rice suspension-cultured cells infected by Xanthomonas oryzae pv.oryza (Xoo)
Research
Xian Chen1  Zhiping Deng2  Chulang Yu2  Jianping Chen2  Chengqi Yan2 
[1] College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China;State Key Laboratory Breeding Base for Zhejiang Sustainable Pest and Disease Control, MOA Key Laboratory of Biotechnology in Plant Protection, Zhejiang Provincial Key Laboratory of Plant Virology, Institute of Virology and Biotechnology, Zhejiang Academy of Agricultural Science, 310021, Hangzhou, China;State Key Laboratory Breeding Base for Zhejiang Sustainable Pest and Disease Control, MOA Key Laboratory of Biotechnology in Plant Protection, Zhejiang Provincial Key Laboratory of Plant Virology, Institute of Virology and Biotechnology, Zhejiang Academy of Agricultural Science, 310021, Hangzhou, China;
关键词: Bacterial blight;    2-D DIGE;    MS;    Secretome;    Xoo3654;   
DOI  :  10.1186/s12953-016-0091-z
 received in 2015-09-02, accepted in 2016-01-17,  发布年份 2016
来源: Springer
PDF
【 摘 要 】

BackgroundRice bacterial blight (BB) caused by Xanthomonas oryzae pv.oryzae (Xoo) is one of the most devastating bacterial diseases in rice-growing regions worldwide. The rice-Xoo interaction is a classical model for studying the interaction between plants and pathogens. Secreted proteins play important roles in plant-bacterial interactions, but are poorly studied in the rice-Xoo system. Rice cv. Nipponbare is highly susceptible to Xoo. Here, we used two-dimensional difference gel electrophoresis (2D-DIGE) coupled with MALDI-TOF/TOF mass spectrometry (MS), to investigate secreted proteins in Nipponbare embryo cell suspension culture infected by Xoo.ResultsA total of 32 protein spots changed significantly (p < 0.05) by more than 1.5 fold in gel intensity after Xoo inoculation, and were identified by MS. They represent protein products of 11 unique genes, seven from rice and four from Xoo. Of the rice proteins, six up-regulated proteins are involved in cell wall modification, the TCA cycle, glycolysis and redox, while a down-regulated protein, CHIT16, is involved in plant defense. Quantitative Real-Time PCR showed that transcript levels were not correlated with secreted protein levels. Of the Xoo proteins, three of them were possibly located in the extracellular space as shown by transient expression assays in rice protoplasts. Two of the Xoo proteins were previously reported to be likely involved in pathogenicity, and the third gene, Xoo3654, is likely a negative regulator of Xoo virulence as its overexpression reduced Xoo pathogenicity in our study.ConclusionAmong the secreted proteins that responded to Xoo inoculation, we identified rice proteins involved in cell defense and Xoo proteins involved in pathogenicity. Our study also showed that Xoo3654 (X2) protein is likely a novel negative regulator of Xoo virulence. These results not only help us better understand the interaction between susceptible rice and Xoo, but also serve as a reference for studying the interaction between other plants and their pathogens.

【 授权许可】

CC BY   
© Chen et al. 2016

【 预 览 】
附件列表
Files Size Format View
RO202311107166448ZK.pdf 1624KB PDF download
【 参考文献 】
  • [1]
  • [2]
  • [3]
  • [4]
  • [5]
  • [6]
  • [7]
  • [8]
  • [9]
  • [10]
  • [11]
  • [12]
  • [13]
  • [14]
  • [15]
  • [16]
  • [17]
  • [18]
  • [19]
  • [20]
  • [21]
  • [22]
  • [23]
  • [24]
  • [25]
  • [26]
  • [27]
  • [28]
  • [29]
  • [30]
  • [31]
  • [32]
  • [33]
  • [34]
  • [35]
  • [36]
  • [37]
  • [38]
  • [39]
  • [40]
  • [41]
  • [42]
  • [43]
  • [44]
  • [45]
  • [46]
  • [47]
  • [48]
  • [49]
  • [50]
  文献评价指标  
  下载次数:0次 浏览次数:0次