期刊论文详细信息
BMC Genomics
Bimodal dynamics of primary metabolism-related responses in tolerant potato-Potato virus Y interaction
Research Article
Dominik Vodnik1  Tjaša Stare2  Katja Stare2  Živa Ramšak2  Neža Turnšek2  Andrej Blejec2  Kristina Gruden2  Wolfram Weckwerth3  Stefanie Wienkoop3 
[1] Department of Agronomy, Biotechnical Faculty, University of Ljubljana, Ljubljana, Slovenia;Department of Biotechnology and Systems Biology, National Institute of Biology, Vecna pot 111, Ljubljana, Slovenia;Department of Ecogenomics and Systems Biology, Faculty of Life Sciences, University of Vienna, Vienna, Austria;
关键词: Plant-pathogen interactions;    Potato virus Y;    Potyviridae;    Salicylic acid;    Solanum tuberosum;    Whole transcriptome analysis;    Shot-gun proteomics;    Photosynthetic parameters;   
DOI  :  10.1186/s12864-015-1925-2
 received in 2015-01-13, accepted in 2015-09-11,  发布年份 2015
来源: Springer
PDF
【 摘 要 】

BackgroundPotato virus Y (PVY) is a major pathogen that causes substantial economic losses in worldwide potato production. Different potato cultivars differ in resistance to PVY, from severe susceptibility, through tolerance, to complete resistance. The aim of this study was to better define the mechanisms underlying tolerant responses of potato to infection by the particularly aggressive PVYNTN strain. We focused on the dynamics of the primary metabolism-related processes during PVYNTN infection.ResultsA comprehensive analysis of the dynamic changes in primary metabolism was performed, which included whole transcriptome analysis, nontargeted proteomics, and photosynthetic activity measurements in potato cv. Désirée and its transgenic counterpart depleted for accumulation of salicylic acid (NahG-Désirée). Faster multiplication of virus occurred in the NahG-Désirée, with these plants developing strong disease symptoms. We show that while the dynamics of responses at the transcriptional level are extensive and bimodal, this is only partially translated to the protein level, and to the final functional outcome. Photosynthesis-related genes are transiently induced before viral multiplication is detected and it is down-regulated later on. This is reflected as a deficiency of the photosynthetic apparatus at the onset of viral multiplication only. Interestingly, specific and constant up-regulation of some RuBisCO transcripts was detected in Désirée plants, which might be important, as these proteins have been shown to interact with viral proteins.In SA-deficient and more sensitive NahG-Désirée plants, consistent down-regulation of photosynthesis-related genes was detected. A constant reduction in the photochemical efficiency from the onset of viral multiplication was identified; in nontransgenic plants this decrease was only transient. The transient reduction in net photosynthetic rate occurred in both genotypes with the same timing, and coincided with changes in stomatal conductivity.ConclusionsDown-regulation of photosynthesis-related gene expression and decreased photosynthetic activity is in line with other studies that have reported the effects of biotic stress on photosynthesis. Here, we additionally detected induction of light-reaction components in the early stages of PVYNTN infection of tolerant interaction. As some of these components have already been shown to interact with viral proteins, their overproduction might contribute to the absence of symptoms in cv. Désirée.

【 授权许可】

CC BY   
© Stare et al. 2015

【 预 览 】
附件列表
Files Size Format View
RO202311107017718ZK.pdf 1906KB PDF download
【 参考文献 】
  • [1]
  • [2]
  • [3]
  • [4]
  • [5]
  • [6]
  • [7]
  • [8]
  • [9]
  • [10]
  • [11]
  • [12]
  • [13]
  • [14]
  • [15]
  • [16]
  • [17]
  • [18]
  • [19]
  • [20]
  • [21]
  • [22]
  • [23]
  • [24]
  • [25]
  • [26]
  • [27]
  • [28]
  • [29]
  • [30]
  • [31]
  • [32]
  • [33]
  • [34]
  • [35]
  • [36]
  • [37]
  • [38]
  • [39]
  • [40]
  • [41]
  • [42]
  • [43]
  • [44]
  • [45]
  • [46]
  • [47]
  • [48]
  • [49]
  • [50]
  • [51]
  • [52]
  • [53]
  • [54]
  • [55]
  • [56]
  • [57]
  • [58]
  • [59]
  • [60]
  • [61]
  • [62]
  • [63]
  • [64]
  • [65]
  • [66]
  • [67]
  • [68]
  • [69]
  • [70]
  • [71]
  • [72]
  • [73]
  • [74]
  • [75]
  • [76]
  • [77]
  • [78]
  • [79]
  • [80]
  文献评价指标  
  下载次数:14次 浏览次数:3次