期刊论文详细信息
BMC Bioinformatics
Bioimage classification with subcategory discriminant transform of high dimensional visual descriptors
Research Article
Yue Wang1  Mei Chen2  Heng Huang3  Weidong Cai4  Yang Song4  Dagan Feng5 
[1] Bradley Department of Electrical and Computer Engineering, Virginia Polytechnic Institute and State University, Arlington, USA;Computer Engineering Department, University of Albany State University of New York, Albany, USA;Robotics Institute, Carnegie Mellon University, Pittsburgh, USA;Department of Computer Science and Engineering, University of Texas, Arlington, USA;School of Information Technologies, The University of Sydney, Sydney, Australia;School of Information Technologies, The University of Sydney, Sydney, Australia;Med-X Research Institute, Shanghai Jiaotong University, Shanghai, China;
关键词: Microscopy imaging;    Classification;    Subcategory model;    Discriminative feature transform;   
DOI  :  10.1186/s12859-016-1318-9
 received in 2016-03-07, accepted in 2016-11-01,  发布年份 2016
来源: Springer
PDF
【 摘 要 】

BackgroundBioimage classification is a fundamental problem for many important biological studies that require accurate cell phenotype recognition, subcellular localization, and histopathological classification. In this paper, we present a new bioimage classification method that can be generally applicable to a wide variety of classification problems. We propose to use a high-dimensional multi-modal descriptor that combines multiple texture features. We also design a novel subcategory discriminant transform (SDT) algorithm to further enhance the discriminative power of descriptors by learning convolution kernels to reduce the within-class variation and increase the between-class difference.ResultsWe evaluate our method on eight different bioimage classification tasks using the publicly available IICBU 2008 database. Each task comprises a separate dataset, and the collection represents typical subcellular, cellular, and tissue level classification problems. Our method demonstrates improved classification accuracy (0.9 to 9%) on six tasks when compared to state-of-the-art approaches. We also find that SDT outperforms the well-known dimension reduction techniques, with for example 0.2 to 13% improvement over linear discriminant analysis.ConclusionsWe present a general bioimage classification method, which comprises a highly descriptive visual feature representation and a learning-based discriminative feature transformation algorithm. Our evaluation on the IICBU 2008 database demonstrates improved performance over the state-of-the-art for six different classification tasks.

【 授权许可】

CC BY   
© The Author(s) 2016

【 预 览 】
附件列表
Files Size Format View
RO202311106996455ZK.pdf 2152KB PDF download
MediaObjects/12902_2023_1474_MOESM1_ESM.docx 28KB Other download
MediaObjects/12888_2023_5278_MOESM1_ESM.docx 20KB Other download
MediaObjects/40249_2023_1146_MOESM2_ESM.png 8543KB Other download
MediaObjects/12888_2023_5278_MOESM2_ESM.docx 20KB Other download
12951_2015_155_Article_IEq9.gif 1KB Image download
MediaObjects/12888_2023_5278_MOESM3_ESM.docx 19KB Other download
Fig. 2 153KB Image download
12951_2015_155_Article_IEq12.gif 1KB Image download
12951_2015_155_Article_IEq20.gif 1KB Image download
12951_2015_155_Article_IEq21.gif 1KB Image download
12951_2015_155_Article_IEq22.gif 1KB Image download
MediaObjects/13046_2023_2846_MOESM6_ESM.pdf 313KB PDF download
12951_2015_155_Article_IEq23.gif 1KB Image download
Fig. 1 238KB Image download
12951_2017_315_Article_IEq1.gif 1KB Image download
Fig. 1 1909KB Image download
Fig. 4 161KB Image download
MediaObjects/13046_2023_2846_MOESM8_ESM.pdf 161KB PDF download
Fig. 6 83KB Image download
12951_2015_111_Article_IEq1.gif 1KB Image download
Fig. 1 2753KB Image download
Table 2 61KB Table download
MediaObjects/13046_2023_2846_MOESM10_ESM.pdf 123KB PDF download
【 图 表 】

Fig. 1

12951_2015_111_Article_IEq1.gif

Fig. 6

Fig. 4

Fig. 1

12951_2017_315_Article_IEq1.gif

Fig. 1

12951_2015_155_Article_IEq23.gif

12951_2015_155_Article_IEq22.gif

12951_2015_155_Article_IEq21.gif

12951_2015_155_Article_IEq20.gif

12951_2015_155_Article_IEq12.gif

Fig. 2

12951_2015_155_Article_IEq9.gif

【 参考文献 】
  • [1]
  • [2]
  • [3]
  • [4]
  • [5]
  • [6]
  • [7]
  • [8]
  • [9]
  • [10]
  • [11]
  • [12]
  • [13]
  • [14]
  • [15]
  • [16]
  • [17]
  • [18]
  • [19]
  • [20]
  • [21]
  • [22]
  • [23]
  • [24]
  • [25]
  • [26]
  • [27]
  • [28]
  • [29]
  • [30]
  • [31]
  • [32]
  • [33]
  • [34]
  • [35]
  • [36]
  • [37]
  • [38]
  • [39]
  • [40]
  • [41]
  • [42]
  • [43]
  • [44]
  • [45]
  • [46]
  • [47]
  • [48]
  • [49]
  • [50]
  • [51]
  • [52]
  • [53]
  • [54]
  • [55]
  文献评价指标  
  下载次数:1次 浏览次数:0次