BMC Microbiology | |
The analysis of para-cresol production and tolerance in Clostridium difficile 027 and 012 strains | |
Research Article | |
Brendan W Wren1 Ruth McNerney1 Lisa F Dawson1 Elizabeth H Donahue1 Jake Bundy2 Richard H Barton3 Stephen T Cartman4 Nigel P Minton4 | |
[1] Department of Infectious & Tropical Diseases, London School of Hygiene and Tropical Medicine, Keppel Street, WC1E 7HT, London, UK;Imperial College London, SW7 2AZ, South Kensington, London, UK;Imperial College London, SW7 2AZ, South Kensington, London, UK;Centre for Integrated Systems Biolog, Imperial College (CISBIC), SW7 2AZ, South Kensington, London, UK;Institute of Infection, Immunity and Inflammation, School of Molecular Medical Science, University of Nottingham, NG7 2UH, Nottingham, UK; | |
关键词: Surface Acoustic Wave; Temporal Production; Thiamphenicol; Strain CA434; Respective Parent Strain; | |
DOI : 10.1186/1471-2180-11-86 | |
received in 2010-11-23, accepted in 2011-04-28, 发布年份 2011 | |
来源: Springer | |
![]() |
【 摘 要 】
BackgroundClostridium difficile is the major cause of antibiotic associated diarrhoea and in recent years its increased prevalence has been linked to the emergence of hypervirulent clones such as the PCR-ribotype 027. Characteristically, C. difficile infection (CDI) occurs after treatment with broad-spectrum antibiotics, which disrupt the normal gut microflora and allow C. difficile to flourish. One of the relatively unique features of C. difficile is its ability to ferment tyrosine to para-cresol via the intermediate para-hydroxyphenylacetate (p-HPA). P-cresol is a phenolic compound with bacteriostatic properties which C. difficile can tolerate and may provide the organism with a competitive advantage over other gut microflora, enabling it to proliferate and cause CDI. It has been proposed that the hpdBCA operon, rarely found in other gut microflora, encodes the enzymes responsible for the conversion of p-HPA to p-cresol.ResultsWe show that the PCR-ribotype 027 strain R20291 quantitatively produced more p-cresol in-vitro and was significantly more tolerant to p-cresol than the sequenced strain 630 (PCR-ribotype 012). Tyrosine conversion to p-HPA was only observed under certain conditions. We constructed gene inactivation mutants in the hpdBCA operon in strains R20291 and 630Δerm which curtails their ability to produce p-cresol, confirming the role of these genes in p-cresol production. The mutants were equally able to tolerate p-cresol compared to the respective parent strains, suggesting that tolerance to p-cresol is not linked to its production.ConclusionsC. difficile converts tyrosine to p-cresol, utilising the hpdBCA operon in C. difficile strains 630 and R20291. The hypervirulent strain R20291 exhibits increased production of and tolerance to p-cresol, which may be a contributory factor to the virulence of this strain and other hypervirulent PCR-ribotype 027 strains.
【 授权许可】
Unknown
© Dawson et al; licensee BioMed Central Ltd. 2011. This article is published under license to BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
【 预 览 】
Files | Size | Format | View |
---|---|---|---|
RO202311106996421ZK.pdf | 1232KB | ![]() |
【 参考文献 】
- [1]
- [2]
- [3]
- [4]
- [5]
- [6]
- [7]
- [8]
- [9]
- [10]
- [11]
- [12]
- [13]
- [14]
- [15]
- [16]
- [17]
- [18]
- [19]
- [20]
- [21]
- [22]
- [23]