期刊论文详细信息
BMC Cancer
Label-free blood serum detection by using surface-enhanced Raman spectroscopy and support vector machine for the preoperative diagnosis of parotid gland tumors
Research Article
Zhining Wen1  Bing Yan2  Xianyang Luo2  Lili Xue3  Longjiang Li4  Bo Li4 
[1] College of Chemistry, Sichuan University, Chengdu, Sichuan, China;Department of Otolaryngology Head and Neck Surgery, the First Affiliated Hosipital of Xiamen University, Xiamen, China;Department of Stomatology, the First Affiliated Hosipital of Xiamen University, Xiamen, China;State Key Laboratory of Oral disease, Sichuan University, Chengdu, Sichuan, China;
关键词: Parotid gland tumor;    SERS;    SVM;    Preoperative diagnosis;    Nanoparticle;   
DOI  :  10.1186/s12885-015-1653-7
 received in 2014-12-18, accepted in 2015-09-17,  发布年份 2015
来源: Springer
PDF
【 摘 要 】

BackgroundIt is difficult for the parotid gland neoplasms to make an accurate preoperative diagnosis due to the restriction of biopsy in the parotid gland neoplasms. The aim of this study is to apply the surface-enhanced Raman spectroscopy (SERS) method for the blood serum biochemical detection and use the support vector machine for the analysis in order to develop a simple but accurate blood serum detection for preoperative diagnosis of the parotid gland neoplasms.MethodsThe blood serums were collected from four groups: the patients with pleomorphic adenoma, the patients with Warthin’s tumor, the patients with mucoepidermoid carcinoma and the volunteers without parotid gland neoplasms. Au nanoparticles (Au NPs) were mixed with the blood serum as the SERS active nanosensor to enhance the Raman scattering signals produced by the various biochemical materials and high quality SERS spectrum were obtained by using the Raman microscope system. Then the support vector machine was utilized to analyze the differences of the SERS spectrum from the blood serum of different groups and established a diagnostic model to discriminate the different groups.ResultsIt was demonstrated that there were different intensities of SERS peaks assigned to various biochemical changes in the blood serum between the parotid gland tumor groups and normal control group. Compared with the SERS spectra of the normal serums, the intensities of peaks assigned to nucleic acids and proteins increased in the SERS spectra of the parotid gland tumor serums, which manifested the differences of the biochemical metabolites in the serum from the patients with parotid gland tumors. When the leave-one-sample-out method was used, support vector machine (SVM) played an outstanding performance in the classification of the SERS spectra with the high accuracy (84.1 % ~ 88.3 %), sensitivity (82.2 % ~ 97.4 %) and specificity (73.7 % ~ 86.7 %). Though the accuracy, sensitivity and specificity decreased in the leave-one-patient-out cross validation, the mucoepidermoid carcinoma was still easier to diagnose than other tumors.DiscussionThe specific molecular differences of parotid gland tumors and normal serums were significantly demonstrated through the comparison between the various SERS spectra.But compared with the serum SERS spectra reported in the other studies, some differences exist between the spectra in this study and the ones reported in the lietratures. These differences may result from the various nano-particles, the different preparation of serum and equipment parameters, and we could need a further research to find an exact explanation.Based on the SERS spectra of the serum samples, SVM have shown a giant potential to diagnose the parotid gland tumors in our preliminary study. However, different cross validaiton methods could effect the accuracy and a further study involing a great number of samples should be needed.ConclusionsThis exploratory research demonstrated the great potential of SERS combined with SVM into a non-invasive clinical diagnostic method for preoperative diagnosis of parotid gland tumors. And the internal relation between the spectra and patients should be established in the further study.

【 授权许可】

CC BY   
© Yan et al. 2015

【 预 览 】
附件列表
Files Size Format View
RO202311106853278ZK.pdf 1731KB PDF download
【 参考文献 】
  • [1]
  • [2]
  • [3]
  • [4]
  • [5]
  • [6]
  • [7]
  • [8]
  • [9]
  • [10]
  • [11]
  • [12]
  • [13]
  • [14]
  • [15]
  • [16]
  • [17]
  • [18]
  • [19]
  • [20]
  • [21]
  • [22]
  • [23]
  • [24]
  • [25]
  • [26]
  • [27]
  • [28]
  • [29]
  • [30]
  • [31]
  • [32]
  • [33]
  • [34]
  • [35]
  • [36]
  • [37]
  • [38]
  • [39]
  文献评价指标  
  下载次数:10次 浏览次数:1次