期刊论文详细信息
Molecular Cancer
A conserved region within interferon regulatory factor 5 controls breast cancer cell migration through a cytoplasmic and transcription-independent mechanism
Research
Erica Maria Pimenta1  Betsy J Barnes1 
[1] Department of Microbiology, Biochemistry & Molecular Genetics, Rutgers Biomedical and Health Sciences, 07103, Newark, NJ, USA;Rutgers Biomedical and Health Sciences, New Jersey Medical School-Cancer Center Rm. G1224, 205 South Orange Ave, 07103, Newark, NJ, USA;
关键词: Interferon regulatory factor 5;    IRF5;    Epithelial cell migration;    Motility;    Breast cancer metastasis;   
DOI  :  10.1186/s12943-015-0305-5
 received in 2014-06-12, accepted in 2015-01-27,  发布年份 2015
来源: Springer
PDF
【 摘 要 】

BackgroundMigration of breast cancer cells out of a duct or lobule is a prerequisite for invasion and metastasis. However, the factors controlling breast cancer cell migration are not fully elucidated. We previously found that expression of the transcription factor interferon regulatory factor 5 (IRF5) is significantly decreased as a breast lesion progresses from a non-malignant stage to ductal carcinoma in situ and is eventually lost in ~80% of invasive ductal carcinomas examined. Human in vitro and murine in vivo models of invasive breast cancer confirmed an important role for IRF5 in regulating cell motility, invasion and/or metastasis; yet, the mechanism(s) by which this occurs is not known. Since IRF5 is primarily expressed in the cytoplasm of human mammary epithelial cells, we hypothesized that IRF5 may function in a transcription-independent manner to control intrinsic cell migration.ResultsA series of IRF5 deletion mutants were tested in cell motility, invasion and migration assays. A novel, conserved 10 amino acid domain was identified that regulates mammary epithelial cell migration. This region (∆115-125) is downstream of IRF5′s DNA binding domain and therefore when absent, retains IRF5 transcription activity but loses cell migration control. An IRF5 construct with a mutated nuclear localization signal further confirmed that IRF5 controls migration in a cytoplasmic and transcription-independent manner. Candidate cytoskeletal molecules were identified in MDA-MB-231 cells to interact with IRF5 by immunoprecipitation and mass spectrometry analysis. α6-tubulin was independently confirmed to interact with endogenous IRF5 in MCF-10A cells. Alterations in F-actin bundling after staining EV- and IRF5-231 cells with phalloidin suggests that IRF5 may control cell migration/motility through its interaction with cytoskeletal molecules that contribute to the formation of F-actin networks. Last and most notably, we found that IRF5′s control of cell migration is not restricted to mammary epithelial cells but functions in other epithelial cell types suggesting a more global role for this newly identified cell migratory function of IRF5.ConclusionsThese findings are significant as they identify a new regulator of epithelial cell migration and provide specific insight into the mechanism(s) by which loss of IRF5 expression in mammary epithelial cells contributes to breast cancer metastasis.

【 授权许可】

CC BY   
© Pimenta and Barnes; licensee BioMed Central. 2015

【 预 览 】
附件列表
Files Size Format View
RO202311106816807ZK.pdf 2011KB PDF download
【 参考文献 】
  • [1]
  • [2]
  • [3]
  • [4]
  • [5]
  • [6]
  • [7]
  • [8]
  • [9]
  • [10]
  • [11]
  • [12]
  • [13]
  • [14]
  • [15]
  • [16]
  • [17]
  • [18]
  • [19]
  • [20]
  • [21]
  • [22]
  • [23]
  • [24]
  • [25]
  • [26]
  • [27]
  • [28]
  • [29]
  • [30]
  • [31]
  • [32]
  • [33]
  • [34]
  • [35]
  • [36]
  • [37]
  • [38]
  • [39]
  • [40]
  • [41]
  • [42]
  • [43]
  • [44]
  • [45]
  • [46]
  文献评价指标  
  下载次数:5次 浏览次数:1次