期刊论文详细信息
Genetics Selection Evolution
Multiple-trait structured antedependence model to study the relationship between litter size and birth weight in pigs and rabbits
Research Article
Yvon Billon1  Hervé Garreau2  Ingrid David2  Laurianne Canario2  Elodie Balmisse3 
[1] GenESI, INRA, 17700, Surgères, France;GenPhySE, INRA, INPT, ENVT, Université de Toulouse, 31326, Castanet-Tolosan, France;Pectoul, INRA, 31326, Castanet-Tolosan, France;
关键词: Structural Equation Model;    Genetic Correlation;    Litter Size;    Heritability Estimate;    Somatic Cell Count;   
DOI  :  10.1186/s12711-017-0288-3
 received in 2016-10-12, accepted in 2017-01-10,  发布年份 2017
来源: Springer
PDF
【 摘 要 】

BackgroundSome genetic studies need to take into account correlations between traits that are repeatedly measured over time. Multiple-trait random regression models are commonly used to analyze repeated traits but suffer from several major drawbacks. In the present study, we developed a multiple-trait extension of the structured antedependence model (SAD) to overcome this issue and validated its usefulness by modeling the association between litter size (LS) and average birth weight (ABW) over parities in pigs and rabbits.MethodsThe single-trait SAD model assumes that a random effect at time tj\documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{upgreek}\setlength{\oddsidemargin}{-69pt}\begin{document}$$t_{j}$$\end{document} can be explained by the previous values of the random effect (i.e. at previous times). The proposed multiple-trait extension of the SAD model consists in adding a cross-antedependence parameter to the single-trait SAD model. This model can be easily fitted using ASReml and the OWN Fortran program that we have developed. In comparison with the random regression model, we used our multiple-trait SAD model to analyze the LS and ABW of 4345 litters from 1817 Large White sows and 8706 litters from 2286 L-1777 does over a maximum of five successive parities.ResultsFor both species, the multiple-trait SAD fitted the data better than the random regression model. The difference between AIC of the two models (AIC_random regression-AIC_SAD) were equal to 7 and 227 for pigs and rabbits, respectively. A similar pattern of heritability and correlation estimates was obtained for both species. Heritabilities were lower for LS (ranging from 0.09 to 0.29) than for ABW (ranging from 0.23 to 0.39). The general trend was a decrease of the genetic correlation for a given trait between more distant parities. Estimates of genetic correlations between LS and ABW were negative and ranged from −0.03 to −0.52 across parities. No correlation was observed between the permanent environmental effects, except between the permanent environmental effects of LS and ABW of the same parity, for which the estimate of the correlation was strongly negative (ranging from −0.57 to −0.67).ConclusionsWe demonstrated that application of our multiple-trait SAD model is feasible for studying several traits with repeated measurements and showed that it provided a better fit to the data than the random regression model.

【 授权许可】

CC BY   
© The Author(s) 2017

【 预 览 】
附件列表
Files Size Format View
RO202311106746135ZK.pdf 1656KB PDF download
MediaObjects/13046_2023_2843_MOESM3_ESM.docx 27KB Other download
Fig. 2 194KB Image download
Fig. 7 245KB Image download
Fig. 6 595KB Image download
Fig. 1 874KB Image download
Fig. 3 683KB Image download
Fig. 7 1862KB Image download
Fig. 4 224KB Image download
1920KB Image download
MediaObjects/13049_2023_1122_MOESM1_ESM.docx 133KB Other download
12936_2023_4756_Article_IEq3.gif 1KB Image download
Fig. 4 137KB Image download
Fig. 2 432KB Image download
Fig. 1 303KB Image download
Fig. 5 152KB Image download
12960_2017_220_Article_IEq2.gif 1KB Image download
Fig. 2 234KB Image download
MediaObjects/41408_2023_927_MOESM1_ESM.png 1051KB Other download
Fig. 6 47KB Image download
Fig. 1 86KB Image download
Fig. 5 747KB Image download
Fig. 7 1484KB Image download
Fig. 10 1239KB Image download
Fig. 2 86KB Image download
Fig. 1 2460KB Image download
Fig. 3 305KB Image download
Fig. 3 77KB Image download
12937_2016_133_Article_IEq1.gif 1KB Image download
Fig. 4 62KB Image download
Fig. 4 79KB Image download
MediaObjects/13068_2023_2399_MOESM4_ESM.xlsx 12KB Other download
Fig. 6 54KB Image download
Fig. 5 91KB Image download
Fig. 3 254KB Image download
Fig. 6 90KB Image download
12951_2017_292_Article_IEq1.gif 1KB Image download
12951_2015_155_Article_IEq62.gif 1KB Image download
MediaObjects/13046_2022_2359_MOESM2_ESM.docx 15KB Other download
Fig. 2 1305KB Image download
Fig. 1 1997KB Image download
12951_2017_255_Article_IEq39.gif 1KB Image download
Fig. 1 690KB Image download
Fig. 2 661KB Image download
Fig. 6 118KB Image download
MediaObjects/40360_2023_695_MOESM1_ESM.docx 12962KB Other download
Fig. 3 3150KB Image download
Fig. 1 67KB Image download
12951_2017_255_Article_IEq40.gif 1KB Image download
MediaObjects/12947_2023_317_MOESM1_ESM.docx 420KB Other download
Fig. 2 2049KB Image download
Fig. 2 826KB Image download
Fig. 3 1017KB Image download
Fig. 2 58KB Image download
Fig. 2 358KB Image download
12936_2017_2045_Article_IEq18.gif 1KB Image download
Fig. 4 1866KB Image download
12936_2017_2014_Article_IEq29.gif 1KB Image download
Fig. 2 209KB Image download
12936_2015_836_Article_IEq13.gif 1KB Image download
12951_2017_255_Article_IEq41.gif 1KB Image download
MediaObjects/12974_2023_2923_MOESM1_ESM.docx 3913KB Other download
Fig. 1 110KB Image download
MediaObjects/13046_2023_2862_MOESM6_ESM.png 301KB Other download
Fig. 2 101KB Image download
Fig. 3 512KB Image download
Fig. 5 144KB Image download
Fig. 4 1156KB Image download
12951_2015_155_Article_IEq65.gif 1KB Image download
MediaObjects/41408_2023_930_MOESM1_ESM.docx 27KB Other download
MediaObjects/41408_2023_930_MOESM2_ESM.docx 28KB Other download
MediaObjects/13046_2023_2862_MOESM8_ESM.docx 17KB Other download
Fig. 8 214KB Image download
Fig. 8 798KB Image download
12936_2017_1963_Article_IEq41.gif 1KB Image download
Fig. 1 118KB Image download
Fig. 9 191KB Image download
Fig. 2 530KB Image download
MediaObjects/41408_2023_930_MOESM3_ESM.docx 24KB Other download
MediaObjects/41408_2023_930_MOESM4_ESM.docx 22KB Other download
MediaObjects/41408_2023_930_MOESM5_ESM.docx 42KB Other download
Fig. 11 260KB Image download
Fig. 3 245KB Image download
Fig. 6 1819KB Image download
Fig. 12 492KB Image download
MediaObjects/12888_2023_5286_MOESM1_ESM.docx 72KB Other download
Fig. 1 89KB Image download
Fig. 1 347KB Image download
Fig. 1 31KB Image download
Fig. 13 402KB Image download
Fig. 2 37KB Image download
Fig. 5 1803KB Image download
MediaObjects/41408_2023_927_MOESM3_ESM.tif 2072KB Other download
Fig. 14 165KB Image download
Fig. 3 424KB Image download
Fig. 15 98KB Image download
Fig. 1 294KB Image download
12888_2023_5206_Article_IEq1.gif 1KB Image download
Fig. 17 99KB Image download
12888_2023_5206_Article_IEq3.gif 1KB Image download
Fig. 18 701KB Image download
12951_2015_155_Article_IEq69.gif 1KB Image download
MediaObjects/40249_2023_1142_MOESM1_ESM.docx 16KB Other download
Fig. 4 431KB Image download
Fig. 6 993KB Image download
Fig. 3 257KB Image download
MediaObjects/13049_2023_1131_MOESM3_ESM.mp4 884KB Other download
Fig. 19 120KB Image download
Fig. 1 4104KB Image download
MediaObjects/41408_2023_927_MOESM4_ESM.tif 7017KB Other download
Fig. 5 4247KB Image download
Fig. 7 3820KB Image download
MediaObjects/41021_2023_284_MOESM1_ESM.pdf 242KB PDF download
Fig. 2 2313KB Image download
Fig. 10 58KB Image download
12951_2015_155_Article_IEq70.gif 1KB Image download
Fig. 3 603KB Image download
Fig. 1 410KB Image download
Fig. 1 801KB Image download
MediaObjects/40798_2023_647_MOESM1_ESM.docx 181KB Other download
12947_2017_100_Article_IEq1.gif 1KB Image download
Fig. 3 2370KB Image download
Fig. 3 131KB Image download
Fig. 1 103KB Image download
Fig. 4 2772KB Image download
Fig. 2 640KB Image download
Fig. 2 522KB Image download
Fig. 1 127KB Image download
Fig. 2 105KB Image download
【 图 表 】

Fig. 2

Fig. 1

Fig. 2

Fig. 2

Fig. 4

Fig. 1

Fig. 3

Fig. 3

12947_2017_100_Article_IEq1.gif

Fig. 1

Fig. 1

Fig. 3

12951_2015_155_Article_IEq70.gif

Fig. 10

Fig. 2

Fig. 7

Fig. 5

Fig. 1

Fig. 19

Fig. 3

Fig. 6

Fig. 4

12951_2015_155_Article_IEq69.gif

Fig. 18

12888_2023_5206_Article_IEq3.gif

Fig. 17

12888_2023_5206_Article_IEq1.gif

Fig. 1

Fig. 15

Fig. 3

Fig. 14

Fig. 5

Fig. 2

Fig. 13

Fig. 1

Fig. 1

Fig. 1

Fig. 12

Fig. 6

Fig. 3

Fig. 11

Fig. 2

Fig. 9

Fig. 1

12936_2017_1963_Article_IEq41.gif

Fig. 8

Fig. 8

12951_2015_155_Article_IEq65.gif

Fig. 4

Fig. 5

Fig. 3

Fig. 2

Fig. 1

12951_2017_255_Article_IEq41.gif

12936_2015_836_Article_IEq13.gif

Fig. 2

12936_2017_2014_Article_IEq29.gif

Fig. 4

12936_2017_2045_Article_IEq18.gif

Fig. 2

Fig. 2

Fig. 3

Fig. 2

Fig. 2

12951_2017_255_Article_IEq40.gif

Fig. 1

Fig. 3

Fig. 6

Fig. 2

Fig. 1

12951_2017_255_Article_IEq39.gif

Fig. 1

Fig. 2

12951_2015_155_Article_IEq62.gif

12951_2017_292_Article_IEq1.gif

Fig. 6

Fig. 3

Fig. 5

Fig. 6

Fig. 4

Fig. 4

12937_2016_133_Article_IEq1.gif

Fig. 3

Fig. 3

Fig. 1

Fig. 2

Fig. 10

Fig. 7

Fig. 5

Fig. 1

Fig. 6

Fig. 2

12960_2017_220_Article_IEq2.gif

Fig. 5

Fig. 1

Fig. 2

Fig. 4

12936_2023_4756_Article_IEq3.gif

Fig. 4

Fig. 7

Fig. 3

Fig. 1

Fig. 6

Fig. 7

Fig. 2

【 参考文献 】
  • [1]
  • [2]
  • [3]
  • [4]
  • [5]
  • [6]
  • [7]
  • [8]
  • [9]
  • [10]
  • [11]
  • [12]
  • [13]
  • [14]
  • [15]
  • [16]
  • [17]
  • [18]
  • [19]
  • [20]
  • [21]
  • [22]
  • [23]
  • [24]
  • [25]
  • [26]
  • [27]
  • [28]
  • [29]
  • [30]
  • [31]
  • [32]
  • [33]
  • [34]
  • [35]
  • [36]
  • [37]
  • [38]
  • [39]
  • [40]
  • [41]
  文献评价指标  
  下载次数:0次 浏览次数:0次