期刊论文详细信息
BMC Genomics
A hierarchical model for clustering m6A methylation peaks in MeRIP-seq data
Research
Shaowu Zhang1  Jia Meng2  Xiaodong Cui3  Yufei Huang4  Yidong Chen5  Manjeet K. Rao6 
[1] College of Automation, Northwestern Polytechnical University, 710072, Xi’an, China;Department of Biological Science, Xi’an Jiaotong-liverpool University, 215123, Suzhou, China;Department of Electrical and Computer Engineering, University of Texas, 78249, San Antonio, TX, USA;Department of Electrical and Computer Engineering, University of Texas, 78249, San Antonio, TX, USA;Depeartment of Epidemiology and Biostatistics, University of Texas Health Science Center, 78229, San Antonio, TX, USA;Depeartment of Epidemiology and Biostatistics, University of Texas Health Science Center, 78229, San Antonio, TX, USA;Greehey Children’s Cancer Research Institute, University of Texas Health Science Center, 78229, San Antonio, TX, USA;Greehey Children’s Cancer Research Institute, University of Texas Health Science Center, 78229, San Antonio, TX, USA;
关键词: Bayesian Information Criterion;    Beta Distribution;    Human HeLa Cell;    Methylation Peak;    Methylation Degree;   
DOI  :  10.1186/s12864-016-2913-x
来源: Springer
PDF
【 摘 要 】

BackgroundThe recent advent of the state-of-art high throughput sequencing technology, known as Methylated RNA Immunoprecipitation combined with RNA sequencing (MeRIP-seq) revolutionizes the area of mRNA epigenetics and enables the biologists and biomedical researchers to have a global view of N6-Methyladenosine (m6A) on transcriptome. Yet there is a significant need for new computation tools for processing and analysing MeRIP-Seq data to gain a further insight into the function and m6A mRNA methylation.ResultsWe developed a novel algorithm and an open source R package (http://compgenomics.utsa.edu/metcluster) for uncovering the potential types of m6A methylation by clustering the degree of m6A methylation peaks in MeRIP-Seq data. This algorithm utilizes a hierarchical graphical model to model the reads account variance and the underlying clusters of the methylation peaks. Rigorous statistical inference is performed to estimate the model parameter and detect the number of clusters. MeTCluster is evaluated on both simulated and real MeRIP-seq datasets and the results demonstrate its high accuracy in characterizing the clusters of methylation peaks. Our algorithm was applied to two different sets of real MeRIP-seq datasets and reveals a novel pattern that methylation peaks with less peak enrichment tend to clustered in the 5′ end of both in both mRNAs and lncRNAs, whereas those with higher peak enrichment are more likely to be distributed in CDS and towards the 3′end of mRNAs and lncRNAs. This result might suggest that m6A’s functions could be location specific.ConclusionsIn this paper, a novel hierarchical graphical model based algorithm was developed for clustering the enrichment of methylation peaks in MeRIP-seq data. MeTCluster is written in R and is publicly available.

【 授权许可】

CC BY   
© The Author(s). 2016

【 预 览 】
附件列表
Files Size Format View
RO202311106644639ZK.pdf 2227KB PDF download
Fig. 4 1866KB Image download
Fig. 2 1452KB Image download
12936_2017_2014_Article_IEq29.gif 1KB Image download
Fig. 2 101KB Image download
Fig. 1 344KB Image download
Fig. 3 512KB Image download
Fig. 5 144KB Image download
Fig. 4 1156KB Image download
12951_2015_155_Article_IEq65.gif 1KB Image download
12951_2016_177_Article_IEq1.gif 1KB Image download
Fig. 6 130KB Image download
MediaObjects/41408_2023_930_MOESM1_ESM.docx 27KB Other download
MediaObjects/41408_2023_930_MOESM2_ESM.docx 28KB Other download
MediaObjects/13046_2023_2862_MOESM8_ESM.docx 17KB Other download
Fig. 8 214KB Image download
Fig. 8 798KB Image download
12936_2017_1963_Article_IEq41.gif 1KB Image download
Fig. 1 118KB Image download
Fig. 9 191KB Image download
Fig. 2 530KB Image download
MediaObjects/41408_2023_930_MOESM3_ESM.docx 24KB Other download
MediaObjects/41408_2023_930_MOESM5_ESM.docx 42KB Other download
Fig. 11 260KB Image download
Fig. 3 245KB Image download
Fig. 6 1819KB Image download
Fig. 12 492KB Image download
MediaObjects/12888_2023_5286_MOESM1_ESM.docx 72KB Other download
Fig. 1 89KB Image download
Fig. 1 347KB Image download
Fig. 1 31KB Image download
Fig. 13 402KB Image download
Fig. 2 37KB Image download
Fig. 5 1803KB Image download
MediaObjects/41408_2023_927_MOESM3_ESM.tif 2072KB Other download
Fig. 14 165KB Image download
Fig. 3 424KB Image download
Fig. 15 98KB Image download
Fig. 1 294KB Image download
Fig. 16 216KB Image download
12888_2023_5206_Article_IEq1.gif 1KB Image download
Fig. 17 99KB Image download
12888_2023_5206_Article_IEq3.gif 1KB Image download
Fig. 18 701KB Image download
12951_2015_155_Article_IEq69.gif 1KB Image download
【 图 表 】

12951_2015_155_Article_IEq69.gif

Fig. 18

12888_2023_5206_Article_IEq3.gif

Fig. 17

12888_2023_5206_Article_IEq1.gif

Fig. 16

Fig. 1

Fig. 15

Fig. 3

Fig. 14

Fig. 5

Fig. 2

Fig. 13

Fig. 1

Fig. 1

Fig. 1

Fig. 12

Fig. 6

Fig. 3

Fig. 11

Fig. 2

Fig. 9

Fig. 1

12936_2017_1963_Article_IEq41.gif

Fig. 8

Fig. 8

Fig. 6

12951_2016_177_Article_IEq1.gif

12951_2015_155_Article_IEq65.gif

Fig. 4

Fig. 5

Fig. 3

Fig. 1

Fig. 2

12936_2017_2014_Article_IEq29.gif

Fig. 2

Fig. 4

【 参考文献 】
  • [1]
  • [2]
  • [3]
  • [4]
  • [5]
  • [6]
  • [7]
  • [8]
  • [9]
  • [10]
  • [11]
  • [12]
  • [13]
  • [14]
  • [15]
  • [16]
  • [17]
  • [18]
  • [19]
  • [20]
  • [21]
  • [22]
  文献评价指标  
  下载次数:7次 浏览次数:0次