期刊论文详细信息
Reproductive Biology and Endocrinology
Altered placental development in undernourished rats: role of maternal glucocorticoids
Research
Chun-Hung Chen1  Louiza Belkacemi2  Mina Desai2  Michael G Ross2  Andrea Jelks2 
[1] Department of Obstetrics and Gynecology, Chang Gung Memorial Hospital-Chia Yi Medical Center, Chia Yi Chia Pu Road (County Way 168), Chia Yi, Taiwan;Department of Obstetrics and Gynecology, Los Angeles Biomedical Research Institute at Harbor-UCLA Medical Center, 90502, Torrance, California, USA;David-Geffen School of Medicine at UCLA, 10833 Le Conte Ave, 90095, Los Angeles, California, USA;
关键词: Fetal Growth;    Fetal Growth Restriction;    Fetal Weight;    Placental Weight;    HSD11B Type;   
DOI  :  10.1186/1477-7827-9-105
 received in 2011-04-05, accepted in 2011-08-01,  发布年份 2011
来源: Springer
PDF
【 摘 要 】

Maternal undernutrition (MUN) during pregnancy may lead to fetal intrauterine growth restriction (IUGR), which itself predisposes to adult risk of obesity, hypertension, and diabetes. IUGR may stem from insufficient maternal nutrient supply or reduced placental nutrient transfer. In addition, a critical role for maternal stress-induced glucocorticoids (GCs) has been suggested to contribute to both IUGR and the ensuing risk of adult metabolic syndrome. While GC-induced fetal organ defects have been examined, there have been few studies on placental responses to MUN-induced maternal stress. Therefore, we hypothesize that 50% MUN associates with increased maternal GC levels and decreased placental HSD11B. This in turn leads to decreased placental and fetal growth, hence the need to investigate nutrient transporters. We measured maternal serum levels of corticosterone, and the placental basal and labyrinth zone expression of glucocorticoid receptor (NR3C1), 11-hydroxysteroid dehydrogenase B 1 (HSD11B-1) predominantly activates cortisone to cortisol and 11-dehydrocorticosterone (11-DHC) to corticosterone, although can sometimes drive the opposing (inactivating reaction), and HSD11B-2 (only inactivates and converts corticosterone to 11-DHC in rodents) in control and MUN rats at embryonic day 20 (E20). Moreover, we evaluated the expression of nutrient transporters for glucose (SLC2A1, SLC2A3) and amino acids (SLC38A1, 2, and 4). Our results show that MUN dams displayed significantly increased plasma corticosterone levels compared to control dams. Further, a reduction in fetal and placental weights was observed in both the mid-horn and proximal-horn positions. Notably, the placental labyrinth zone, the site of feto-maternal exchange, showed decreased expression of HSD11B1-2 in both horns, and increased HSD11B-1 in proximal-horn placentas, but no change in NR3C1. The reduced placental GCs catabolic capacity was accompanied by downregulation of SLC2A3, SLC38A1, and SLC38A2 expression, and by increased SLC38A4 expression, in labyrinth zones from the mid- and proximal-horns. In marked contrast to the labyrinth zone, the basal zone, which is the site of hormone production, did not show significant changes in any of these enzymes or transporters. These results suggest that dysregulation of the labyrinth zone GC "barrier", and more importantly decreased nutrient supply resulting from downregulation of some of the amino acid system A transporters, may contribute to suboptimal fetal growth under MUN.

【 授权许可】

CC BY   
© Belkacemi et al; licensee BioMed Central Ltd. 2011

【 预 览 】
附件列表
Files Size Format View
RO202311106421962ZK.pdf 1846KB PDF download
【 参考文献 】
  • [1]
  • [2]
  • [3]
  • [4]
  • [5]
  • [6]
  • [7]
  • [8]
  • [9]
  • [10]
  • [11]
  • [12]
  • [13]
  • [14]
  • [15]
  • [16]
  • [17]
  • [18]
  • [19]
  • [20]
  • [21]
  • [22]
  • [23]
  • [24]
  • [25]
  • [26]
  • [27]
  • [28]
  • [29]
  • [30]
  • [31]
  • [32]
  • [33]
  • [34]
  • [35]
  文献评价指标  
  下载次数:1次 浏览次数:0次