期刊论文详细信息
BMC Bioinformatics
A method for exploring implicit concept relatedness in biomedical knowledge network
Research
Ye Wang1  Lan Huang2  Tian Bai2  Yan Wang2  Leiguang Gong3  Casimir A. Kulikowski4 
[1] College of Computer Science and Technology, Jilin Univesity, 2699 Qianjin St, Changchun, China;College of Computer Science and Technology, Jilin Univesity, 2699 Qianjin St, Changchun, China;Key Laboratory of Symbolic Computation and Knowledge Engineering of Ministry of Education, Jilin University, 2699 Qianjin St, Changchun, China;College of Computer Science and Technology, Jilin Univesity, 2699 Qianjin St, Changchun, China;Yantai Intelligent Information Technologies Ltd., 2699 Qianjin St, Yantai, China;Department of Computer Science, Rutgers, The State University of New Jersey, 2699 Qianjin St, Piscataway, NJ, USA;
关键词: Biomedical ontology;    Knowledge network;    Implicit relatedness;   
DOI  :  10.1186/s12859-016-1131-5
来源: Springer
PDF
【 摘 要 】

BackgroundBiomedical information and knowledge, structural and non-structural, stored in different repositories can be semantically connected to form a hybrid knowledge network. How to compute relatedness between concepts and discover valuable but implicit information or knowledge from it effectively and efficiently is of paramount importance for precision medicine, and a major challenge facing the biomedical research community.ResultsIn this study, a hybrid biomedical knowledge network is constructed by linking concepts across multiple biomedical ontologies as well as non-structural biomedical knowledge sources. To discover implicit relatedness between concepts in ontologies for which potentially valuable relationships (implicit knowledge) may exist, we developed a Multi-Ontology Relatedness Model (MORM) within the knowledge network, for which a relatedness network (RN) is defined and computed across multiple ontologies using a formal inference mechanism of set-theoretic operations. Semantic constraints are designed and implemented to prune the search space of the relatedness network.ConclusionsExperiments to test examples of several biomedical applications have been carried out, and the evaluation of the results showed an encouraging potential of the proposed approach to biomedical knowledge discovery.

【 授权许可】

CC BY   
© The Author(s) 2016

【 预 览 】
附件列表
Files Size Format View
RO202311106326194ZK.pdf 1154KB PDF download
Fig. 2 1335KB Image download
Fig. 5 2363KB Image download
Fig. 5 989KB Image download
MediaObjects/12974_2023_2934_MOESM1_ESM.docx 125KB Other download
Fig. 8 1963KB Image download
Fig. 2 178KB Image download
12951_2015_155_Article_IEq74.gif 1KB Image download
Fig. 2 2578KB Image download
12951_2015_155_Article_IEq75.gif 1KB Image download
Fig. 3 2497KB Image download
MediaObjects/12944_2023_1936_MOESM6_ESM.pdf 297KB PDF download
Fig. 7 432KB Image download
Fig. 6 1051KB Image download
12951_2016_246_Article_IEq3.gif 1KB Image download
12951_2017_303_Article_IEq1.gif 1KB Image download
Fig. 6 3167KB Image download
【 图 表 】

Fig. 6

12951_2017_303_Article_IEq1.gif

12951_2016_246_Article_IEq3.gif

Fig. 6

Fig. 7

Fig. 3

12951_2015_155_Article_IEq75.gif

Fig. 2

12951_2015_155_Article_IEq74.gif

Fig. 2

Fig. 8

Fig. 5

Fig. 5

Fig. 2

【 参考文献 】
  • [1]
  • [2]
  • [3]
  • [4]
  • [5]
  • [6]
  • [7]
  • [8]
  • [9]
  • [10]
  • [11]
  • [12]
  • [13]
  • [14]
  • [15]
  • [16]
  • [17]
  • [18]
  • [19]
  • [20]
  • [21]
  • [22]
  • [23]
  • [24]
  • [25]
  • [26]
  • [27]
  • [28]
  • [29]
  • [30]
  • [31]
  • [32]
  • [33]
  • [34]
  • [35]
  • [36]
  • [37]
  • [38]
  • [39]
  • [40]
  • [41]
  • [42]
  • [43]
  • [44]
  • [45]
  • [46]
  • [47]
  • [48]
  文献评价指标  
  下载次数:11次 浏览次数:3次