期刊论文详细信息
BMC Bioinformatics
Semi-automated quantitative Drosophila wings measurements
Software
Sara Kawana1  Yoshitaka Ogawa1  Koichiro Tamura2  Sheng Yang Michael Loh3  Hwee Kuan Lee4 
[1] Department of Biological Sciences, Tokyo Metropolitan University, Hachioji, 192-0397, Tokyo, Japan;Department of Biological Sciences, Tokyo Metropolitan University, Hachioji, 192-0397, Tokyo, Japan;Research Center for Genomics and Bioinformatics, Tokyo Metropolitan University, Hachioji, 192-0397, Tokyo, Japan;Imaging Informatics Division, Bioinformatics Institute, 30 Biopolis Street, 07-01, Matrix, Singapore, 138671, Singapore, Singapore;Imaging Informatics Division, Bioinformatics Institute, 30 Biopolis Street, 07-01, Matrix, Singapore, 138671, Singapore, Singapore;Research Center for Genomics and Bioinformatics, Tokyo Metropolitan University, Hachioji, 192-0397, Tokyo, Japan;
关键词: Drosophila;    Image processing;    Wing morphometrics;    Automated detection;   
DOI  :  10.1186/s12859-017-1720-y
 received in 2016-07-08, accepted in 2017-06-09,  发布年份 2017
来源: Springer
PDF
【 摘 要 】

BackgroundDrosophila melanogaster is an important organism used in many fields of biological research such as genetics and developmental biology. Drosophila wings have been widely used to study the genetics of development, morphometrics and evolution. Therefore there is much interest in quantifying wing structures of Drosophila. Advancement in technology has increased the ease in which images of Drosophila can be acquired. However such studies have been limited by the slow and tedious process of acquiring phenotypic data.ResultsWe have developed a system that automatically detects and measures key points and vein segments on a Drosophila wing. Key points are detected by performing image transformations and template matching on Drosophila wing images while vein segments are detected using an Active Contour algorithm.The accuracy of our key point detection was compared against key point annotations of users. We also performed key point detection using different training data sets of Drosophila wing images. We compared our software with an existing automated image analysis system for Drosophila wings and showed that our system performs better than the state of the art. Vein segments were manually measured and compared against the measurements obtained from our system.ConclusionOur system was able to detect specific key points and vein segments from Drosophila wing images with high accuracy.

【 授权许可】

CC BY   
© The Author(s) 2017

【 预 览 】
附件列表
Files Size Format View
RO202311106269699ZK.pdf 2013KB PDF download
12888_2023_5206_Article_IEq3.gif 1KB Image download
Fig. 18 701KB Image download
12951_2015_155_Article_IEq69.gif 1KB Image download
MediaObjects/40249_2023_1142_MOESM1_ESM.docx 16KB Other download
Fig. 6 993KB Image download
Fig. 3 257KB Image download
MediaObjects/13049_2023_1131_MOESM3_ESM.mp4 884KB Other download
12951_2017_255_Article_IEq45.gif 1KB Image download
Fig. 19 120KB Image download
Fig. 1 4104KB Image download
MediaObjects/41408_2023_927_MOESM4_ESM.tif 7017KB Other download
Fig. 5 4247KB Image download
Fig. 7 3820KB Image download
MediaObjects/41021_2023_284_MOESM1_ESM.pdf 242KB PDF download
Fig. 2 2313KB Image download
Fig. 10 58KB Image download
12951_2015_155_Article_IEq70.gif 1KB Image download
Fig. 3 603KB Image download
Fig. 1 410KB Image download
Fig. 1 801KB Image download
MediaObjects/40798_2023_647_MOESM1_ESM.docx 181KB Other download
12947_2017_100_Article_IEq1.gif 1KB Image download
Fig. 3 2370KB Image download
Fig. 3 131KB Image download
Fig. 1 103KB Image download
Fig. 4 2772KB Image download
Fig. 2 640KB Image download
Fig. 2 522KB Image download
Fig. 1 127KB Image download
Fig. 2 105KB Image download
Fig. 2 654KB Image download
Fig. 1 1293KB Image download
Fig. 3 1367KB Image download
Fig. 3 360KB Image download
12951_2015_155_Article_IEq72.gif 1KB Image download
Fig. 6 1635KB Image download
12951_2015_155_Article_IEq73.gif 1KB Image download
Fig. 7 38KB Image download
Fig. 6 578KB Image download
【 图 表 】

Fig. 6

Fig. 7

12951_2015_155_Article_IEq73.gif

Fig. 6

12951_2015_155_Article_IEq72.gif

Fig. 3

Fig. 3

Fig. 1

Fig. 2

Fig. 2

Fig. 1

Fig. 2

Fig. 2

Fig. 4

Fig. 1

Fig. 3

Fig. 3

12947_2017_100_Article_IEq1.gif

Fig. 1

Fig. 1

Fig. 3

12951_2015_155_Article_IEq70.gif

Fig. 10

Fig. 2

Fig. 7

Fig. 5

Fig. 1

Fig. 19

12951_2017_255_Article_IEq45.gif

Fig. 3

Fig. 6

12951_2015_155_Article_IEq69.gif

Fig. 18

12888_2023_5206_Article_IEq3.gif

【 参考文献 】
  • [1]
  • [2]
  • [3]
  • [4]
  • [5]
  • [6]
  • [7]
  • [8]
  • [9]
  • [10]
  • [11]
  • [12]
  • [13]
  • [14]
  • [15]
  • [16]
  • [17]
  • [18]
  • [19]
  • [20]
  • [21]
  • [22]
  • [23]
  • [24]
  • [25]
  • [26]
  • [27]
  • [28]
  • [29]
  • [30]
  • [31]
  • [32]
  • [33]
  • [34]
  文献评价指标  
  下载次数:1次 浏览次数:1次