期刊论文详细信息
BMC Bioinformatics
Characterization and identification of protein O-GlcNAcylation sites with substrate specificity
Research
Hui-Ju Kao1  Cheng-Tsung Lu1  Tzong-Yi Lee2  Hsin-Yi Wu3  Yi-Ju Chen3  Yu-Ju Chen3 
[1] Department of Computer Science and Engineering, Yuan Ze University, 320, Taoyuan, Taiwan;Department of Computer Science and Engineering, Yuan Ze University, 320, Taoyuan, Taiwan;Innovation Center for Big Data and Digital Convergence, Yuan Ze University, 320, Taoyuan, Taiwan;Institute of Chemistry, Academia Sinica, 115, Taipei, Taiwan;
关键词: O-GlcNAcylation;    O-linked glycosylation;    substrate site specificity;    support vector machine;   
DOI  :  10.1186/1471-2105-15-S16-S1
来源: Springer
PDF
【 摘 要 】

BackgroundProtein O-GlcNAcylation, involving the attachment of single N-acetylglucosamine (GlcNAc) to the hydroxyl group of serine or threonine residues. Elucidation of O-GlcNAcylation sites on proteins is required in order to decipher its crucial roles in regulating cellular processes and aid in drug design. With an increasing number of O-GlcNAcylation sites identified by mass spectrometry (MS)-based proteomics, several methods have been proposed for the computational identification of O-GlcNAcylation sites. However, no development that focuses on the investigation of O-GlcNAcylated substrate motifs has existed. Thus, we were motivated to design a new method for the identification of protein O-GlcNAcylation sites with the consideration of substrate site specificity.ResultsIn this study, 375 experimentally verified O-GlcNAcylation sites were collected from dbOGAP, which is an integrated resource for protein O-GlcNAcylation. Due to the difficulty in characterizing the substrate motifs by conventional sequence logo analysis, a recursively statistical method has been applied to obtain significant conserved motifs. To construct the predictive models learned from the identified substrate motifs, we adopted Support Vector Machines (SVMs). A five-fold cross validation was used to evaluate the predictive model, achieving sensitivity, specificity, and accuracy of 0.76, 0.80, and 0.78, respectively. Additionally, an independent testing set, which was really blind to the training data of predictive model, was used to demonstrate that the proposed method could provide a promising accuracy (0.94) and outperform three other O-GlcNAcylation site prediction tools.ConclusionThis work proposed a computational method to identify informative substrate motifs for O-GlcNAcylation sites. The evaluation of cross validation and independent testing indicated that the identified motifs were effective in the identification of O-GlcNAcylation sites. A case study demonstrated that the proposed method could be a feasible means of conducting preliminary analyses of protein O-GlcNAcylation. We also anticipated that the revealed substrate motif may facilitate the study of extensive crosstalk between O-GlcNAcylation and phosphorylation. This method may help unravel their mechanisms and roles in signaling, transcription, chronic disease, and cancer.

【 授权许可】

Unknown   
© Wu et al.; licensee BioMed Central Ltd. 2014. This article is published under license to BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.

【 预 览 】
附件列表
Files Size Format View
RO202311106211620ZK.pdf 1344KB PDF download
【 参考文献 】
  • [1]
  • [2]
  • [3]
  • [4]
  • [5]
  • [6]
  • [7]
  • [8]
  • [9]
  • [10]
  • [11]
  • [12]
  • [13]
  • [14]
  • [15]
  • [16]
  • [17]
  • [18]
  • [19]
  • [20]
  • [21]
  • [22]
  • [23]
  • [24]
  • [25]
  • [26]
  • [27]
  • [28]
  • [29]
  • [30]
  • [31]
  • [32]
  • [33]
  • [34]
  • [35]
  • [36]
  • [37]
  • [38]
  • [39]
  • [40]
  • [41]
  • [42]
  • [43]
  • [44]
  • [45]
  • [46]
  • [47]
  • [48]
  • [49]
  • [50]
  • [51]
  • [52]
  • [53]
  • [54]
  • [55]
  • [56]
  • [57]
  • [58]
  文献评价指标  
  下载次数:10次 浏览次数:0次