期刊论文详细信息
EJNMMI Physics
Combining deep learning with a kinetic model to predict dynamic PET images and generate parametric images
Original Research
Ying Liang1  Xieraili Wumener1  Jinpeng Zhou1  Yarong Zhang1  Zixiang Chen2  Dong Liang2  Liwen Wan2  Zhanli Hu2  Ganglin Liang3 
[1] Department of Nuclear Medicine, National Cancer Center, National Clinical Research Center for Cancer, Cancer Hospital & Shenzhen Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, 518116, Shenzhen, China;Lauterbur Research Center for Biomedical Imaging, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, 518055, Shenzhen, China;Lauterbur Research Center for Biomedical Imaging, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, 518055, Shenzhen, China;Shenzhen College of Advanced Technology, University of Chinese Academy of Sciences, Beijing, China;
关键词: Parametric imaging;    Image generation;    Deep learning;    Kinetic model;    Dynamic PET images;   
DOI  :  10.1186/s40658-023-00579-y
 received in 2023-01-19, accepted in 2023-09-15,  发布年份 2023
来源: Springer
PDF
【 摘 要 】

BackgroundDynamic positron emission tomography (PET) images are useful in clinical practice because they can be used to calculate the metabolic parameters (Ki) of tissues using graphical methods (such as Patlak plots). Ki is more stable than the standard uptake value and has a good reference value for clinical diagnosis. However, the long scanning time required for obtaining dynamic PET images, usually an hour, makes this method less useful in some ways. There is a tradeoff between the scan durations and the signal-to-noise ratios (SNRs) of Ki images. The purpose of our study is to obtain approximately the same image as that produced by scanning for one hour in just half an hour, improving the SNRs of images obtained by scanning for 30 min and reducing the necessary 1-h scanning time for acquiring dynamic PET images.MethodsIn this paper, we use U-Net as a feature extractor to obtain feature vectors with a priori knowledge about the image structure of interest and then utilize a parameter generator to obtain five parameters for a two-tissue, three-compartment model and generate a time activity curve (TAC), which will become close to the original 1-h TAC through training. The above-generated dynamic PET image finally obtains the Ki parameter image.ResultsA quantitative analysis showed that the network-generated Ki parameter maps improved the structural similarity index measure and peak SNR by averages of 2.27% and 7.04%, respectively, and decreased the root mean square error (RMSE) by 16.3% compared to those generated with a scan time of 30 min.ConclusionsThe proposed method is feasible, and satisfactory PET quantification accuracy can be achieved using the proposed deep learning method. Further clinical validation is needed before implementing this approach in routine clinical applications.

【 授权许可】

CC BY   
© Springer Nature Switzerland AG 2023

【 预 览 】
附件列表
Files Size Format View
RO202311106026265ZK.pdf 2605KB PDF download
Fig. 2 86KB Image download
Fig. 4 62KB Image download
Fig. 5 91KB Image download
Fig. 1 1997KB Image download
Fig. 2 661KB Image download
505KB Image download
Fig. 2 358KB Image download
Fig. 2 101KB Image download
Fig. 8 798KB Image download
Fig. 12 492KB Image download
Fig. 1 347KB Image download
Fig. 13 402KB Image download
Fig. 2 37KB Image download
12888_2023_5206_Article_IEq3.gif 1KB Image download
12951_2017_255_Article_IEq45.gif 1KB Image download
Fig. 19 120KB Image download
Fig. 1 4104KB Image download
Fig. 5 4247KB Image download
Fig. 7 3820KB Image download
Fig. 10 58KB Image download
12951_2015_155_Article_IEq70.gif 1KB Image download
Fig. 2 105KB Image download
MediaObjects/12944_2023_1936_MOESM6_ESM.pdf 297KB PDF download
12951_2017_303_Article_IEq1.gif 1KB Image download
MediaObjects/13068_2023_2399_MOESM7_ESM.xlsx 57KB Other download
MediaObjects/13068_2023_2416_MOESM4_ESM.xls 40KB Other download
MediaObjects/13068_2023_2416_MOESM6_ESM.xls 54KB Other download
12951_2016_246_Article_IEq9.gif 1KB Image download
MediaObjects/12888_2023_5225_MOESM1_ESM.docx 1153KB Other download
Fig. 5 3768KB Image download
12951_2016_223_Article_IEq1.gif 1KB Image download
MediaObjects/13046_2023_2857_MOESM1_ESM.pdf 6527KB PDF download
Fig. 2 2232KB Image download
Fig. 1 573KB Image download
Fig. 4 371KB Image download
Fig. 1 245KB Image download
Fig. 1 111KB Image download
MediaObjects/12974_2023_2910_MOESM3_ESM.tif 3321KB Other download
Fig. 2 155KB Image download
Fig. 4 3333KB Image download
12951_2017_255_Article_IEq51.gif 1KB Image download
MediaObjects/41021_2023_280_MOESM1_ESM.docx 35KB Other download
12951_2017_255_Article_IEq52.gif 1KB Image download
Fig. 4 1969KB Image download
Fig. 9 1203KB Image download
Fig. 1 498KB Image download
Fig. 1 384KB Image download
12951_2016_246_Article_IEq12.gif 1KB Image download
12951_2016_246_Article_IEq13.gif 1KB Image download
【 图 表 】

12951_2016_246_Article_IEq13.gif

12951_2016_246_Article_IEq12.gif

Fig. 1

Fig. 1

Fig. 9

Fig. 4

12951_2017_255_Article_IEq52.gif

12951_2017_255_Article_IEq51.gif

Fig. 4

Fig. 2

Fig. 1

Fig. 1

Fig. 4

Fig. 1

Fig. 2

12951_2016_223_Article_IEq1.gif

Fig. 5

12951_2016_246_Article_IEq9.gif

12951_2017_303_Article_IEq1.gif

Fig. 2

12951_2015_155_Article_IEq70.gif

Fig. 10

Fig. 7

Fig. 5

Fig. 1

Fig. 19

12951_2017_255_Article_IEq45.gif

12888_2023_5206_Article_IEq3.gif

Fig. 2

Fig. 13

Fig. 1

Fig. 12

Fig. 8

Fig. 2

Fig. 2

Fig. 2

Fig. 1

Fig. 5

Fig. 4

Fig. 2

【 参考文献 】
  • [1]
  • [2]
  • [3]
  • [4]
  • [5]
  • [6]
  • [7]
  • [8]
  • [9]
  • [10]
  • [11]
  • [12]
  • [13]
  • [14]
  • [15]
  • [16]
  • [17]
  • [18]
  • [19]
  • [20]
  • [21]
  • [22]
  • [23]
  • [24]
  • [25]
  • [26]
  • [27]
  • [28]
  • [29]
  • [30]
  • [31]
  • [32]
  • [33]
  • [34]
  • [35]
  文献评价指标  
  下载次数:2次 浏览次数:0次